METAGENE-1: Modelo Fundacional Metagenômico para Monitoramento de Pandemias
METAGENE-1: Metagenomic Foundation Model for Pandemic Monitoring
January 3, 2025
Autores: Ollie Liu, Sami Jaghouar, Johannes Hagemann, Shangshang Wang, Jason Wiemels, Jeff Kaufman, Willie Neiswanger
cs.AI
Resumo
Nós pré-treinamos o METAGENE-1, um modelo autoregressivo transformer com 7 bilhões de parâmetros, que referimos como um modelo de fundação metagenômica, em um novo corpus de diversas sequências de DNA e RNA metagenômicas compreendendo mais de 1,5 trilhão de pares de bases. Este conjunto de dados é proveniente de uma grande coleção de amostras de águas residuais humanas, processadas e sequenciadas usando métodos de sequenciamento metagenômico profundo (próxima geração). Ao contrário dos modelos genômicos que se concentram em genomas individuais ou conjuntos curados de espécies específicas, o objetivo do METAGENE-1 é capturar a distribuição completa de informações genômicas presentes nessas águas residuais, para auxiliar em tarefas relevantes para monitoramento de pandemias e detecção de patógenos. Realizamos a tokenização de codificação de pares de bytes (BPE) em nosso conjunto de dados, adaptada para sequências metagenômicas, e então pré-treinamos nosso modelo. Neste artigo, detalhamos primeiro o conjunto de dados de pré-treinamento, estratégia de tokenização e arquitetura do modelo, destacando as considerações e escolhas de design que possibilitam a modelagem eficaz de dados metagenômicos. Em seguida, apresentamos os resultados do pré-treinamento deste modelo em nosso conjunto de dados metagenômicos, fornecendo detalhes sobre nossas perdas, métricas do sistema e estabilidade do treinamento ao longo do pré-treinamento. Finalmente, demonstramos o desempenho do METAGENE-1, que alcança resultados de ponta em um conjunto de benchmarks genômicos e novas avaliações focadas na detecção de patógenos humanos e incorporação de sequências genômicas, mostrando seu potencial para aplicações de saúde pública em monitoramento de pandemias, biossegurança e detecção precoce de ameaças à saúde emergentes.
English
We pretrain METAGENE-1, a 7-billion-parameter autoregressive transformer
model, which we refer to as a metagenomic foundation model, on a novel corpus
of diverse metagenomic DNA and RNA sequences comprising over 1.5 trillion base
pairs. This dataset is sourced from a large collection of human wastewater
samples, processed and sequenced using deep metagenomic (next-generation)
sequencing methods. Unlike genomic models that focus on individual genomes or
curated sets of specific species, the aim of METAGENE-1 is to capture the full
distribution of genomic information present within this wastewater, to aid in
tasks relevant to pandemic monitoring and pathogen detection. We carry out
byte-pair encoding (BPE) tokenization on our dataset, tailored for metagenomic
sequences, and then pretrain our model. In this paper, we first detail the
pretraining dataset, tokenization strategy, and model architecture,
highlighting the considerations and design choices that enable the effective
modeling of metagenomic data. We then show results of pretraining this model on
our metagenomic dataset, providing details about our losses, system metrics,
and training stability over the course of pretraining. Finally, we demonstrate
the performance of METAGENE-1, which achieves state-of-the-art results on a set
of genomic benchmarks and new evaluations focused on human-pathogen detection
and genomic sequence embedding, showcasing its potential for public health
applications in pandemic monitoring, biosurveillance, and early detection of
emerging health threats.Summary
AI-Generated Summary
DeepSeek-R1: Incentivizando a Capacidade de Raciocínio em LLMs via
Aprendizado por ReforçoDeepSeek-R1: Incentivizing Reasoning Capability in LLMs via
Reinforcement Learning
DeepSeek-R1: Incentivizando a Capacidade de Raciocínio em LLMs via
Aprendizado por Reforço
DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via
Reinforcement Learning
DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, Zhen Zhang•Jan 22, 2025•3685
Relatório Técnico do Qwen2.5Qwen2.5 Technical Report
Relatório Técnico do Qwen2.5
Qwen2.5 Technical Report
Qwen, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, Zihan Qiu•Dec 19, 2024•36311
MiniMax-01: Dimensionamento de Modelos de Fundação com Atenção RelâmpagoMiniMax-01: Scaling Foundation Models with Lightning Attention
MiniMax-01: Dimensionamento de Modelos de Fundação com Atenção Relâmpago
MiniMax-01: Scaling Foundation Models with Lightning Attention
MiniMax, Aonian Li, Bangwei Gong, Bo Yang, Boji Shan, Chang Liu, Cheng Zhu, Chunhao Zhang, Congchao Guo, Da Chen, Dong Li, Enwei Jiao, Gengxin Li, Guojun Zhang, Haohai Sun, Houze Dong, Jiadai Zhu, Jiaqi Zhuang, Jiayuan Song, Jin Zhu, Jingtao Han, Jingyang Li, Junbin Xie, Junhao Xu, Junjie Yan, Kaishun Zhang, Kecheng Xiao, Kexi Kang, Le Han, Leyang Wang, Lianfei Yu, Liheng Feng, Lin Zheng, Linbo Chai, Long Xing, Meizhi Ju, Mingyuan Chi, Mozhi Zhang, Peikai Huang, Pengcheng Niu, Pengfei Li, Pengyu Zhao, Qi Yang, Qidi Xu, Qiexiang Wang, Qin Wang, Qiuhui Li, Ruitao Leng, Shengmin Shi, Shuqi Yu, Sichen Li, Songquan Zhu, Tao Huang, Tianrun Liang, Weigao Sun, Weixuan Sun, Weiyu Cheng, Wenkai Li, Xiangjun Song, Xiao Su, Xiaodong Han, Xinjie Zhang, Xinzhu Hou, Xu Min, Xun Zou, Xuyang Shen, Yan Gong, Yingjie Zhu, Yipeng Zhou, Yiran Zhong, Yongyi Hu, Yuanxiang Fan, Yue Yu, Yufeng Yang, Yuhao Li, Yunan Huang, Yunji Li, Yunpeng Huang, Yunzhi Xu, Yuxin Mao, Zehan Li, Zekang Li, Zewei Tao, Zewen Ying, Zhaoyang Cong, Zhen Qin, Zhenhua Fan, Zhihang Yu, Zhuo Jiang, Zijia Wu•Jan 14, 2025•2826