FlipSketch: Umwandlung statischer Zeichnungen in textgesteuerte Skizzieranimationsvideos
FlipSketch: Flipping Static Drawings to Text-Guided Sketch Animations
November 16, 2024
Autoren: Hmrishav Bandyopadhyay, Yi-Zhe Song
cs.AI
Zusammenfassung
Skizzenanimationen bieten ein leistungsstarkes Medium für visuelles Storytelling, von einfachen Flip-Book-Skizzen bis hin zu professionellen Studio-Produktionen. Während traditionelle Animationstechniken Teams aus erfahrenen Künstlern erfordern, um Schlüsselbilder und Zwischenbilder zu zeichnen, erfordern bestehende Automatisierungsansätze immer noch erheblichen künstlerischen Aufwand durch präzise Bewegungspfade oder Schlüsselbildspezifikationen. Wir stellen FlipSketch vor, ein System, das die Magie der Flip-Book-Animation zurückbringt - einfach deine Idee zeichnen und beschreiben, wie du möchtest, dass sie sich bewegt! Unser Ansatz nutzt Bewegungsprioritäten aus Text-zu-Video-Diffusionsmodellen, passt sie an, um Skizzenanimationen durch drei Schlüsselinnovationen zu generieren: (i) Feinabstimmung für die Generierung von Skizzenstil-Bildern, (ii) ein Referenzbildmechanismus, der die visuelle Integrität der Eingabeskizze durch Rauschverfeinerung bewahrt, und (iii) eine duale Aufmerksamkeitskomposition, die flüssige Bewegungen ermöglicht, ohne die visuelle Konsistenz zu verlieren. Im Gegensatz zu eingeschränkten Vektoranimationen unterstützen unsere Rasterbilder dynamische Skizzentransformationen und erfassen die expressive Freiheit traditioneller Animation. Das Ergebnis ist ein intuitives System, das Skizzenanimation so einfach wie das Kritzeln und Beschreiben macht, während die künstlerische Essenz der handgezeichneten Animation erhalten bleibt.
English
Sketch animations offer a powerful medium for visual storytelling, from
simple flip-book doodles to professional studio productions. While traditional
animation requires teams of skilled artists to draw key frames and in-between
frames, existing automation attempts still demand significant artistic effort
through precise motion paths or keyframe specification. We present FlipSketch,
a system that brings back the magic of flip-book animation -- just draw your
idea and describe how you want it to move! Our approach harnesses motion priors
from text-to-video diffusion models, adapting them to generate sketch
animations through three key innovations: (i) fine-tuning for sketch-style
frame generation, (ii) a reference frame mechanism that preserves visual
integrity of input sketch through noise refinement, and (iii) a dual-attention
composition that enables fluid motion without losing visual consistency. Unlike
constrained vector animations, our raster frames support dynamic sketch
transformations, capturing the expressive freedom of traditional animation. The
result is an intuitive system that makes sketch animation as simple as doodling
and describing, while maintaining the artistic essence of hand-drawn animation.Summary
AI-Generated Summary
DeepSeek-R1: Anreizung der Fähigkeit zur Schlussfolgerung in LLMs durch
Reinforcement LearningDeepSeek-R1: Incentivizing Reasoning Capability in LLMs via
Reinforcement Learning
DeepSeek-R1: Anreizung der Fähigkeit zur Schlussfolgerung in LLMs durch
Reinforcement Learning
DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via
Reinforcement Learning
DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, Zhen Zhang•Jan 22, 2025•3685
Qwen2.5 Technischer BerichtQwen2.5 Technical Report
Qwen2.5 Technischer Bericht
Qwen2.5 Technical Report
Qwen, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, Zihan Qiu•Dec 19, 2024•36311
MiniMax-01: Skalierung von Grundlagenmodellen mit Blitz-AufmerksamkeitMiniMax-01: Scaling Foundation Models with Lightning Attention
MiniMax-01: Skalierung von Grundlagenmodellen mit Blitz-Aufmerksamkeit
MiniMax-01: Scaling Foundation Models with Lightning Attention
MiniMax, Aonian Li, Bangwei Gong, Bo Yang, Boji Shan, Chang Liu, Cheng Zhu, Chunhao Zhang, Congchao Guo, Da Chen, Dong Li, Enwei Jiao, Gengxin Li, Guojun Zhang, Haohai Sun, Houze Dong, Jiadai Zhu, Jiaqi Zhuang, Jiayuan Song, Jin Zhu, Jingtao Han, Jingyang Li, Junbin Xie, Junhao Xu, Junjie Yan, Kaishun Zhang, Kecheng Xiao, Kexi Kang, Le Han, Leyang Wang, Lianfei Yu, Liheng Feng, Lin Zheng, Linbo Chai, Long Xing, Meizhi Ju, Mingyuan Chi, Mozhi Zhang, Peikai Huang, Pengcheng Niu, Pengfei Li, Pengyu Zhao, Qi Yang, Qidi Xu, Qiexiang Wang, Qin Wang, Qiuhui Li, Ruitao Leng, Shengmin Shi, Shuqi Yu, Sichen Li, Songquan Zhu, Tao Huang, Tianrun Liang, Weigao Sun, Weixuan Sun, Weiyu Cheng, Wenkai Li, Xiangjun Song, Xiao Su, Xiaodong Han, Xinjie Zhang, Xinzhu Hou, Xu Min, Xun Zou, Xuyang Shen, Yan Gong, Yingjie Zhu, Yipeng Zhou, Yiran Zhong, Yongyi Hu, Yuanxiang Fan, Yue Yu, Yufeng Yang, Yuhao Li, Yunan Huang, Yunji Li, Yunpeng Huang, Yunzhi Xu, Yuxin Mao, Zehan Li, Zekang Li, Zewei Tao, Zewen Ying, Zhaoyang Cong, Zhen Qin, Zhenhua Fan, Zhihang Yu, Zhuo Jiang, Zijia Wu•Jan 14, 2025•2836