TRecViT:一种循环视频Transformer
TRecViT: A Recurrent Video Transformer
December 18, 2024
作者: Viorica Pătrăucean, Xu Owen He, Joseph Heyward, Chuhan Zhang, Mehdi S. M. Sajjadi, George-Cristian Muraru, Artem Zholus, Mahdi Karami, Ross Goroshin, Yutian Chen, Simon Osindero, João Carreira, Razvan Pascanu
cs.AI
摘要
我们提出了一种用于视频建模的新型模块。它依赖于时间-空间-通道分解,针对每个维度都有专用模块:门控线性循环单元(LRUs)在时间上执行信息混合,自注意力层在空间上执行混合,MLPs在通道上执行操作。由此产生的架构TRecViT在稀疏和密集任务上表现良好,可以在监督或自监督模式下训练。值得注意的是,我们的模型是因果的,在大规模视频数据集(SSv2、Kinetics400)上表现优异,优于或与纯注意力模型ViViT-L相当,同时参数数量少3倍,内存占用小12倍,FLOPs计数低5倍。代码和检查点将在以下网址上提供:https://github.com/google-deepmind/trecvit。
English
We propose a novel block for video modelling. It relies on a
time-space-channel factorisation with dedicated blocks for each dimension:
gated linear recurrent units (LRUs) perform information mixing over time,
self-attention layers perform mixing over space, and MLPs over channels. The
resulting architecture TRecViT performs well on sparse and dense tasks, trained
in supervised or self-supervised regimes. Notably, our model is causal and
outperforms or is on par with a pure attention model ViViT-L on large scale
video datasets (SSv2, Kinetics400), while having 3times less parameters,
12times smaller memory footprint, and 5times lower FLOPs count. Code and
checkpoints will be made available online at
https://github.com/google-deepmind/trecvit.Summary
AI-Generated Summary