LoRACLR:对扩散模型定制的对比适应
LoRACLR: Contrastive Adaptation for Customization of Diffusion Models
December 12, 2024
作者: Enis Simsar, Thomas Hofmann, Federico Tombari, Pinar Yanardag
cs.AI
摘要
最近在文本到图像定制方面取得的进展实现了高保真度、上下文丰富的个性化图像生成,使得特定概念能够出现在各种场景中。然而,当前方法在合并多个个性化模型时存在困难,通常导致属性纠缠或需要单独训练以保持概念的独特性。我们提出了LoRACLR,一种新颖的多概念图像生成方法,将多个LoRA模型(每个模型都经过微调以适应不同概念)合并为单一的统一模型,无需额外的个别微调。LoRACLR使用对比目标来对齐和合并这些模型的权重空间,确保兼容性的同时最小化干扰。通过为每个概念强制执行独特而连贯的表示,LoRACLR实现了高效、可扩展的模型组合,用于高质量、多概念图像合成。我们的结果突显了LoRACLR在准确合并多个概念方面的有效性,推动了个性化图像生成的能力。
English
Recent advances in text-to-image customization have enabled high-fidelity,
context-rich generation of personalized images, allowing specific concepts to
appear in a variety of scenarios. However, current methods struggle with
combining multiple personalized models, often leading to attribute entanglement
or requiring separate training to preserve concept distinctiveness. We present
LoRACLR, a novel approach for multi-concept image generation that merges
multiple LoRA models, each fine-tuned for a distinct concept, into a single,
unified model without additional individual fine-tuning. LoRACLR uses a
contrastive objective to align and merge the weight spaces of these models,
ensuring compatibility while minimizing interference. By enforcing distinct yet
cohesive representations for each concept, LoRACLR enables efficient, scalable
model composition for high-quality, multi-concept image synthesis. Our results
highlight the effectiveness of LoRACLR in accurately merging multiple concepts,
advancing the capabilities of personalized image generation.Summary
AI-Generated Summary
1比特LLM时代:所有大型语言模型均为1.58比特。The Era of 1-bit LLMs: All Large Language Models are in 1.58 Bits
1比特LLM时代:所有大型语言模型均为1.58比特。
The Era of 1-bit LLMs: All Large Language Models are in 1.58 Bits
Shuming Ma, Hongyu Wang, Lingxiao Ma, Lei Wang, Wenhui Wang, Shaohan Huang, Li Dong, Ruiping Wang, Jilong Xue, Furu Wei•Feb 27, 2024•612142
DeepSeek-R1:通过强化学习激励LLMs中的推理能力DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via
Reinforcement Learning
DeepSeek-R1:通过强化学习激励LLMs中的推理能力
DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via
Reinforcement Learning
DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, Zhen Zhang•Jan 22, 2025•3685
Qwen2.5 技术报告Qwen2.5 Technical Report
Qwen2.5 技术报告
Qwen2.5 Technical Report
Qwen, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, Zihan Qiu•Dec 19, 2024•36311