Friends-MMC:一個用於多模態多方對話理解的數據集
Friends-MMC: A Dataset for Multi-modal Multi-party Conversation Understanding
December 23, 2024
作者: Yueqian Wang, Xiaojun Meng, Yuxuan Wang, Jianxin Liang, Qun Liu, Dongyan Zhao
cs.AI
摘要
多模多方對話(MMC)是一個鮮少被研究但重要的研究主題,因為它很適合真實世界的情境,因此潛在地具有更廣泛的應用。與傳統的多模對話相比,MMC 需要更強的以角色為中心的理解能力,因為在視覺和文本上下文中都出現了許多對話者。為了促進對這個問題的研究,我們在本文中提出了 Friends-MMC,這是一個包含 24,000 多個獨特發言與視頻上下文配對的 MMC 數據集。為了探索對話的以角色為中心的理解,我們還標註了每個發言者的發言、視頻中出現的臉部的名稱和邊界框。基於這個 Friends-MMC 數據集,我們進一步研究了兩個基本的 MMC 任務:對話發言者識別和對話回應預測,這兩者都具有多方性質,視頻或圖像作為視覺上下文。對於對話發言者識別,我們展示了現有方法(如預訓練模型)的效率問題,並提出了一種簡單而有效的基準方法,利用優化求解器來利用兩種模態的上下文以獲得更好的性能。對於對話回應預測,我們在 Friends-MMC 上微調生成式對話模型,並分析了發言者信息的好處。代碼和數據集可以在 https://github.com/yellow-binary-tree/Friends-MMC 公開獲得,因此我們呼籲更多關注在理解對話時塑造發言者信息。
English
Multi-modal multi-party conversation (MMC) is a less studied yet important
topic of research due to that it well fits real-world scenarios and thus
potentially has more widely-used applications. Compared with the traditional
multi-modal conversations, MMC requires stronger character-centered
understanding abilities as there are many interlocutors appearing in both the
visual and textual context. To facilitate the study of this problem, we present
Friends-MMC in this paper, an MMC dataset that contains 24,000+ unique
utterances paired with video context. To explore the character-centered
understanding of the dialogue, we also annotate the speaker of each utterance,
the names and bounding bboxes of faces that appear in the video. Based on this
Friends-MMC dataset, we further study two fundamental MMC tasks: conversation
speaker identification and conversation response prediction, both of which have
the multi-party nature with the video or image as visual context. For
conversation speaker identification, we demonstrate the inefficiencies of
existing methods such as pre-trained models, and propose a simple yet effective
baseline method that leverages an optimization solver to utilize the context of
two modalities to achieve better performance. For conversation response
prediction, we fine-tune generative dialogue models on Friend-MMC, and analyze
the benefits of speaker information. The code and dataset is publicly available
at https://github.com/yellow-binary-tree/Friends-MMC and thus we call for more
attention on modeling speaker information when understanding conversations.Summary
AI-Generated Summary