透過任務分解和RAG生成低代碼完整工作流程
Generating a Low-code Complete Workflow via Task Decomposition and RAG
November 29, 2024
作者: Orlando Marquez Ayala, Patrice Béchard
cs.AI
摘要
AI 技術正迅速從研究走向生產。隨著能生成文本、圖像和視頻的基礎模型(FMs)的普及,基於 AI 的系統正變得越來越複雜。與傳統基於 AI 的軟件相比,採用 FMs 或基於 GenAI 的系統更難設計,因為它們的規模和多功能性。這使得有必要記錄最佳實踐,即軟件工程中稱為設計模式的知識,這些知識可以在 GenAI 應用中使用。我們的第一個貢獻是將兩種技術,任務分解和檢索增強生成(RAG),正式化為 GenAI 系統的設計模式。我們討論它們在軟件質量屬性方面的權衡,並評論替代方法。我們建議 AI 從業者不僅從科學角度,還應從靈活性、可維護性、安全性和保密性等期望的工程特性角度考慮這些技術。作為第二個貢獻,我們描述了我們在工業界應用任務分解和 RAG 來為企業用戶構建一個複雜的真實世界 GenAI 應用的經驗:工作流生成。生成工作流的任務包括使用系統環境中的數據生成具體計劃,以用戶需求為輸入。由於這兩種模式影響整個 AI 開發周期,我們解釋了它們如何影響數據集創建、模型訓練、模型評估和部署階段。
English
AI technologies are moving rapidly from research to production. With the
popularity of Foundation Models (FMs) that generate text, images, and video,
AI-based systems are increasing their complexity. Compared to traditional
AI-based software, systems employing FMs, or GenAI-based systems, are more
difficult to design due to their scale and versatility. This makes it necessary
to document best practices, known as design patterns in software engineering,
that can be used across GenAI applications. Our first contribution is to
formalize two techniques, Task Decomposition and Retrieval-Augmented Generation
(RAG), as design patterns for GenAI-based systems. We discuss their trade-offs
in terms of software quality attributes and comment on alternative approaches.
We recommend to AI practitioners to consider these techniques not only from a
scientific perspective but also from the standpoint of desired engineering
properties such as flexibility, maintainability, safety, and security. As a
second contribution, we describe our industry experience applying Task
Decomposition and RAG to build a complex real-world GenAI application for
enterprise users: Workflow Generation. The task of generating workflows entails
generating a specific plan using data from the system environment, taking as
input a user requirement. As these two patterns affect the entire AI
development cycle, we explain how they impacted the dataset creation, model
training, model evaluation, and deployment phases.Summary
AI-Generated Summary
1比特LLM時代:所有大型語言模型都在1.58比特。The Era of 1-bit LLMs: All Large Language Models are in 1.58 Bits
1比特LLM時代:所有大型語言模型都在1.58比特。
The Era of 1-bit LLMs: All Large Language Models are in 1.58 Bits
Shuming Ma, Hongyu Wang, Lingxiao Ma, Lei Wang, Wenhui Wang, Shaohan Huang, Li Dong, Ruiping Wang, Jilong Xue, Furu Wei•Feb 27, 2024•612142
DeepSeek-R1:通過強化學習激勵LLM中的推理能力DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via
Reinforcement Learning
DeepSeek-R1:通過強化學習激勵LLM中的推理能力
DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via
Reinforcement Learning
DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, Zhen Zhang•Jan 22, 2025•3685
Qwen2.5 技術報告Qwen2.5 Technical Report
Qwen2.5 技術報告
Qwen2.5 Technical Report
Qwen, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, Zihan Qiu•Dec 19, 2024•36311