一拍即說:單張圖像生成全身說話化身
One Shot, One Talk: Whole-body Talking Avatar from a Single Image
December 2, 2024
作者: Jun Xiang, Yudong Guo, Leipeng Hu, Boyang Guo, Yancheng Yuan, Juyong Zhang
cs.AI
摘要
建構逼真且可動畫化的頭像仍需數分鐘的多視角或單眼自轉影片,而大多數方法缺乏對手勢和表情的精確控制。為了突破這一界限,我們解決了從單張圖像建構全身說話頭像的挑戰。我們提出了一個新穎的流程,解決了兩個關鍵問題:1)複雜的動態建模和2)對新手勢和表情的泛化。為了實現無縫泛化,我們利用最近的姿勢引導圖像到視頻擴散模型來生成不完美的視頻幀作為虛標籤。為了克服由不一致和嘈雜的虛擬視頻帶來的動態建模挑戰,我們引入了緊密耦合的3DGS-網格混合頭像表示,並應用了幾個關鍵的正則化方法來減輕由於不完美標籤引起的不一致性。對於不同主題的廣泛實驗表明,我們的方法使得僅憑一張圖像就能創建出逼真、精確可動畫且表現豐富的全身說話頭像。
English
Building realistic and animatable avatars still requires minutes of
multi-view or monocular self-rotating videos, and most methods lack precise
control over gestures and expressions. To push this boundary, we address the
challenge of constructing a whole-body talking avatar from a single image. We
propose a novel pipeline that tackles two critical issues: 1) complex dynamic
modeling and 2) generalization to novel gestures and expressions. To achieve
seamless generalization, we leverage recent pose-guided image-to-video
diffusion models to generate imperfect video frames as pseudo-labels. To
overcome the dynamic modeling challenge posed by inconsistent and noisy
pseudo-videos, we introduce a tightly coupled 3DGS-mesh hybrid avatar
representation and apply several key regularizations to mitigate
inconsistencies caused by imperfect labels. Extensive experiments on diverse
subjects demonstrate that our method enables the creation of a photorealistic,
precisely animatable, and expressive whole-body talking avatar from just a
single image.Summary
AI-Generated Summary
1比特LLM時代:所有大型語言模型都在1.58比特。The Era of 1-bit LLMs: All Large Language Models are in 1.58 Bits
1比特LLM時代:所有大型語言模型都在1.58比特。
The Era of 1-bit LLMs: All Large Language Models are in 1.58 Bits
Shuming Ma, Hongyu Wang, Lingxiao Ma, Lei Wang, Wenhui Wang, Shaohan Huang, Li Dong, Ruiping Wang, Jilong Xue, Furu Wei•Feb 27, 2024•612142
DeepSeek-R1:通過強化學習激勵LLM中的推理能力DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via
Reinforcement Learning
DeepSeek-R1:通過強化學習激勵LLM中的推理能力
DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via
Reinforcement Learning
DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, Zhen Zhang•Jan 22, 2025•3685
Qwen2.5 技術報告Qwen2.5 Technical Report
Qwen2.5 技術報告
Qwen2.5 Technical Report
Qwen, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, Zihan Qiu•Dec 19, 2024•36311