GS-DiT: Avançando na Geração de Vídeo com Campos Gaussianos Pseudo 4D através de Rastreamento Eficiente de Pontos 3D Densos
GS-DiT: Advancing Video Generation with Pseudo 4D Gaussian Fields through Efficient Dense 3D Point Tracking
January 5, 2025
Autores: Weikang Bian, Zhaoyang Huang, Xiaoyu Shi, Yijin Li, Fu-Yun Wang, Hongsheng Li
cs.AI
Resumo
O controle de vídeo 4D é essencial na geração de vídeos, pois permite o uso de técnicas sofisticadas de lentes, como filmagem com múltiplas câmeras e zoom de dolly, que atualmente não são suportadas por métodos existentes. Treinar um Transformador de Difusão de Vídeo (DiT) diretamente para controlar conteúdo 4D requer vídeos multi-visão caros. Inspirados pela Síntese de Visualização Dinâmica Monocular (MDVS) que otimiza uma representação 4D e renderiza vídeos de acordo com diferentes elementos 4D, como pose da câmera e edição de movimento do objeto, introduzimos campos gaussianos pseudo 4D na geração de vídeos. Especificamente, propomos um novo framework que constrói um campo gaussiano pseudo 4D com rastreamento denso de pontos 3D e renderiza o campo gaussiano para todos os frames de vídeo. Em seguida, ajustamos finamente um DiT pré-treinado para gerar vídeos seguindo a orientação do vídeo renderizado, chamado de GS-DiT. Para impulsionar o treinamento do GS-DiT, também propomos um método eficiente de Rastreamento de Pontos 3D Densos (D3D-PT) para a construção do campo gaussiano pseudo 4D. Nosso D3D-PT supera o SpatialTracker, o método de rastreamento de pontos 3D esparsos de última geração, em precisão e acelera a velocidade de inferência em duas ordens de magnitude. Durante a etapa de inferência, o GS-DiT pode gerar vídeos com o mesmo conteúdo dinâmico enquanto adere a diferentes parâmetros da câmera, abordando uma limitação significativa dos modelos atuais de geração de vídeos. O GS-DiT demonstra fortes capacidades de generalização e estende a controlabilidade 4D do splatting gaussiano para a geração de vídeos além das poses de câmera. Ele suporta efeitos cinematográficos avançados por meio da manipulação do campo gaussiano e intrínsecos da câmera, tornando-se uma ferramenta poderosa para produção de vídeo criativa. Demonstrativos estão disponíveis em https://wkbian.github.io/Projects/GS-DiT/.
English
4D video control is essential in video generation as it enables the use of
sophisticated lens techniques, such as multi-camera shooting and dolly zoom,
which are currently unsupported by existing methods. Training a video Diffusion
Transformer (DiT) directly to control 4D content requires expensive multi-view
videos. Inspired by Monocular Dynamic novel View Synthesis (MDVS) that
optimizes a 4D representation and renders videos according to different 4D
elements, such as camera pose and object motion editing, we bring pseudo 4D
Gaussian fields to video generation. Specifically, we propose a novel framework
that constructs a pseudo 4D Gaussian field with dense 3D point tracking and
renders the Gaussian field for all video frames. Then we finetune a pretrained
DiT to generate videos following the guidance of the rendered video, dubbed as
GS-DiT. To boost the training of the GS-DiT, we also propose an efficient Dense
3D Point Tracking (D3D-PT) method for the pseudo 4D Gaussian field
construction. Our D3D-PT outperforms SpatialTracker, the state-of-the-art
sparse 3D point tracking method, in accuracy and accelerates the inference
speed by two orders of magnitude. During the inference stage, GS-DiT can
generate videos with the same dynamic content while adhering to different
camera parameters, addressing a significant limitation of current video
generation models. GS-DiT demonstrates strong generalization capabilities and
extends the 4D controllability of Gaussian splatting to video generation beyond
just camera poses. It supports advanced cinematic effects through the
manipulation of the Gaussian field and camera intrinsics, making it a powerful
tool for creative video production. Demos are available at
https://wkbian.github.io/Projects/GS-DiT/.Summary
AI-Generated Summary
Relatório Técnico do Qwen2.5Qwen2.5 Technical Report
Relatório Técnico do Qwen2.5
Qwen2.5 Technical Report
Qwen, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, Zihan Qiu•Dec 19, 2024•35611
DeepSeek-R1: Incentivizando a Capacidade de Raciocínio em LLMs via
Aprendizado por ReforçoDeepSeek-R1: Incentivizing Reasoning Capability in LLMs via
Reinforcement Learning
DeepSeek-R1: Incentivizando a Capacidade de Raciocínio em LLMs via
Aprendizado por Reforço
DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via
Reinforcement Learning
DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, Zhen Zhang•Jan 22, 2025•3545
MiniMax-01: Dimensionamento de Modelos de Fundação com Atenção RelâmpagoMiniMax-01: Scaling Foundation Models with Lightning Attention
MiniMax-01: Dimensionamento de Modelos de Fundação com Atenção Relâmpago
MiniMax-01: Scaling Foundation Models with Lightning Attention
MiniMax, Aonian Li, Bangwei Gong, Bo Yang, Boji Shan, Chang Liu, Cheng Zhu, Chunhao Zhang, Congchao Guo, Da Chen, Dong Li, Enwei Jiao, Gengxin Li, Guojun Zhang, Haohai Sun, Houze Dong, Jiadai Zhu, Jiaqi Zhuang, Jiayuan Song, Jin Zhu, Jingtao Han, Jingyang Li, Junbin Xie, Junhao Xu, Junjie Yan, Kaishun Zhang, Kecheng Xiao, Kexi Kang, Le Han, Leyang Wang, Lianfei Yu, Liheng Feng, Lin Zheng, Linbo Chai, Long Xing, Meizhi Ju, Mingyuan Chi, Mozhi Zhang, Peikai Huang, Pengcheng Niu, Pengfei Li, Pengyu Zhao, Qi Yang, Qidi Xu, Qiexiang Wang, Qin Wang, Qiuhui Li, Ruitao Leng, Shengmin Shi, Shuqi Yu, Sichen Li, Songquan Zhu, Tao Huang, Tianrun Liang, Weigao Sun, Weixuan Sun, Weiyu Cheng, Wenkai Li, Xiangjun Song, Xiao Su, Xiaodong Han, Xinjie Zhang, Xinzhu Hou, Xu Min, Xun Zou, Xuyang Shen, Yan Gong, Yingjie Zhu, Yipeng Zhou, Yiran Zhong, Yongyi Hu, Yuanxiang Fan, Yue Yu, Yufeng Yang, Yuhao Li, Yunan Huang, Yunji Li, Yunpeng Huang, Yunzhi Xu, Yuxin Mao, Zehan Li, Zekang Li, Zewei Tao, Zewen Ying, Zhaoyang Cong, Zhen Qin, Zhenhua Fan, Zhihang Yu, Zhuo Jiang, Zijia Wu•Jan 14, 2025•2766