Fysica in Voorspelling van Volgend Token

Physics in Next-token Prediction

November 1, 2024
Auteurs: Hongjun An, Yiliang Song, Xuelong Li
cs.AI

Samenvatting

We hebben de onderliggende natuurkunde ontdekt in Next-token Prediction (NTP). We hebben de wet van informatiebehoud binnen NTP geïdentificeerd en de Eerste Wet van Informatiecapaciteit (IC-1) voorgesteld, waarbij we aantonen dat de essentie van intelligentie-ontwikkeling in auto-regressieve modellen in wezen een proces van informatieoverdracht is. We hebben ook het principe van Landauer geïntroduceerd in NTP, waarbij we de Tweede Wet van Informatiecapaciteit (IC-2) hebben geformuleerd, die de relatie tussen training van auto-regressieve modellen en energieverbruik vaststelt. Daarnaast hebben we verschillende gevolgtrekkingen gepresenteerd die praktisch belangrijk zijn voor productiepraktijken. Tot slot hebben we de compatibiliteit en aanvullendheid van onze bevindingen met bestaande theorieën bevestigd.
English
We discovered the underlying physics in Next-token Prediction (NTP). We identified the law of information conservation within NTP and proposed the First Law of Information Capacity (IC-1), demonstrating that the essence of intelligence emergence in auto-regressive models is fundamentally a process of information transfer. We also introduced Landauer's Principle into NTP, formulating the Second Law of Information Capacity (IC-2), which establishes the relationship between auto-regressive model training and energy consumption. Additionally, we presented several corollaries, which hold practical significance for production practices. Finally, we validated the compatibility and complementarity of our findings with existing theories.

Summary

AI-Generated Summary

Paper Overview

This paper delves into the physics underlying Next-token Prediction (NTP) in AI models. It introduces the First Law of Information Capacity (IC-1) and the Second Law of Information Capacity (IC-2) in NTP, elucidating the relationship between model training, information transfer, and energy consumption. The derived corollaries offer practical guidance, and experimental validation confirms compatibility with existing theories, emphasizing the significance of the theoretical framework for AI advancements.

Core Contribution

The key innovation lies in establishing IC-1 and IC-2 to elucidate the information preservation and energy requirements during model training, offering a fundamental understanding of NTP in AI models.

Research Context

This research positions itself at the intersection of physics and AI, contributing novel insights into the theoretical underpinnings of NTP and its implications for model training efficiency and sustainability.

Keywords

Next-token Prediction, Information Capacity, Energy Consumption, Model Training, Theoretical Framework

Background

The research background involves investigating the physics principles governing NTP in AI models. The rationale stems from the need to understand the information transfer and energy dynamics during model training to enhance efficiency and sustainability in AI systems.

Research Gap

Existing literature lacks a comprehensive exploration of the physics behind NTP in AI models, necessitating a deeper investigation into the information capacity and energy aspects of model training.

Technical Challenges

Technical obstacles include quantifying information capacity, relating it to energy consumption, and establishing theoretical frameworks that align with empirical observations in AI model training.

Prior Approaches

Previous solutions have primarily focused on empirical performance metrics rather than delving into the fundamental physics principles governing NTP in AI models.

Methodology

The methodology involves introducing IC-1 and IC-2, detailing the theoretical foundations, designing a technical architecture to analyze model training dynamics, implementing specific algorithms to validate the laws, and highlighting the technical advantages of the proposed framework.

Theoretical Foundation

The theoretical basis rests on IC-1 and IC-2, elucidating the relationship between model training, information capacity, and energy consumption in NTP.

Technical Architecture

The system design encompasses analyzing the impact of model size, dataset size, and training time on information capacity and energy requirements in AI model training.

Implementation Details

Specific algorithms and methods are employed to validate IC-1 and IC-2, linking the theoretical framework to practical applications in AI model training.

Innovation Points

The innovation lies in quantifying information capacity, energy limits for training auto-regressive models, and demonstrating consistency with existing scaling laws in neural language models.

Experimental Validation

The experimental validation involves configuring precise setups, defining evaluation metrics, presenting quantitative and qualitative results, and conducting a comparative analysis with baseline models to confirm the theoretical framework's efficacy.

Setup

Exact configurations include model parameters, dataset sizes, and training durations to validate the information capacity and energy constraints in AI model training.

Metrics

Evaluation criteria encompass information capacity, energy consumption, model convergence, and compatibility with existing empirical formulas in AI model training.

Results

Quantitative findings reveal the relationship between information capacity and model convergence, validating the theoretical framework's predictions in NTP.

Comparative Analysis

Comparing experimental data with baseline models confirms the consistency between IC-1 and the Scaling Law of Neural Language Models, reinforcing the theoretical framework's applicability in AI model training.

Impact and Implications

The impact and implications of this research highlight specific contributions, limitations, future research directions, and practical applications in the realm of AI model training efficiency and sustainability.

Key Findings

The study unveils fundamental physics principles underlying NTP, offers practical guidance through derived corollaries, and demonstrates compatibility with existing theories, emphasizing the importance of a theoretical framework for AI advancements.

Limitations

An honest assessment acknowledges limitations in the empirical validation of the theoretical framework and the need for further research to explore complex AI model training dynamics.

Future Directions

Concrete research opportunities include investigating advanced information capacity models, refining energy-efficient training strategies, and exploring interdisciplinary collaborations to enhance AI model training sustainability.

Practical Significance

The theoretical framework's practical significance lies in enabling more efficient and sustainable AI model training practices, paving the way for advancements in artificial intelligence with a strong theoretical foundation.

Uitgelichte Papers

DeepSeek-R1: Het stimuleren van redeneervermogen in LLM's via Reinforcement Learning
DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, Zhen ZhangJan 22, 20253685

Technisch Rapport Qwen2.5
Qwen2.5 Technical Report

Qwen, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, Zihan QiuDec 19, 202436311

MiniMax-01: Schalen van Foundation Modellen met Bliksem Aandacht
MiniMax-01: Scaling Foundation Models with Lightning Attention

MiniMax, Aonian Li, Bangwei Gong, Bo Yang, Boji Shan, Chang Liu, Cheng Zhu, Chunhao Zhang, Congchao Guo, Da Chen, Dong Li, Enwei Jiao, Gengxin Li, Guojun Zhang, Haohai Sun, Houze Dong, Jiadai Zhu, Jiaqi Zhuang, Jiayuan Song, Jin Zhu, Jingtao Han, Jingyang Li, Junbin Xie, Junhao Xu, Junjie Yan, Kaishun Zhang, Kecheng Xiao, Kexi Kang, Le Han, Leyang Wang, Lianfei Yu, Liheng Feng, Lin Zheng, Linbo Chai, Long Xing, Meizhi Ju, Mingyuan Chi, Mozhi Zhang, Peikai Huang, Pengcheng Niu, Pengfei Li, Pengyu Zhao, Qi Yang, Qidi Xu, Qiexiang Wang, Qin Wang, Qiuhui Li, Ruitao Leng, Shengmin Shi, Shuqi Yu, Sichen Li, Songquan Zhu, Tao Huang, Tianrun Liang, Weigao Sun, Weixuan Sun, Weiyu Cheng, Wenkai Li, Xiangjun Song, Xiao Su, Xiaodong Han, Xinjie Zhang, Xinzhu Hou, Xu Min, Xun Zou, Xuyang Shen, Yan Gong, Yingjie Zhu, Yipeng Zhou, Yiran Zhong, Yongyi Hu, Yuanxiang Fan, Yue Yu, Yufeng Yang, Yuhao Li, Yunan Huang, Yunji Li, Yunpeng Huang, Yunzhi Xu, Yuxin Mao, Zehan Li, Zekang Li, Zewei Tao, Zewen Ying, Zhaoyang Cong, Zhen Qin, Zhenhua Fan, Zhihang Yu, Zhuo Jiang, Zijia WuJan 14, 20252836

PDF143November 13, 2024