MiniPLM: Kennisdestillatie voor het vooraf trainen van taalmodellen
MiniPLM: Knowledge Distillation for Pre-Training Language Models
October 22, 2024
Auteurs: Yuxian Gu, Hao Zhou, Fandong Meng, Jie Zhou, Minlie Huang
cs.AI
Samenvatting
Kennisdistillatie (KD) wordt veel gebruikt om kleine, hoog presterende student-taalmodellen (LM's) te trainen met behulp van grote docent-LM's. Hoewel effectief bij fine-tuning, staat KD tijdens pre-training voor uitdagingen op het gebied van efficiëntie, flexibiliteit en effectiviteit. Bestaande methoden brengen hoge computationele kosten met zich mee door online docentinferentie, vereisen tokenisatie-matching tussen docent- en student-LM's, of lopen het risico om de moeilijkheid en diversiteit van de door de docent gegenereerde trainingsgegevens te verliezen. Om deze problemen aan te pakken, stellen we MiniPLM voor, een KD-framework voor het vooraf trainen van LM's door de trainingsgegevensverdeling te verfijnen met de kennis van de docent. Voor efficiëntie voert MiniPLM offline docentinferentie uit, waardoor KD voor meerdere student-LM's mogelijk is zonder extra trainingskosten. Voor flexibiliteit werkt MiniPLM uitsluitend op het trainingscorpus, waardoor KD mogelijk is tussen modelfamilies. Voor effectiviteit benut MiniPLM de verschillen tussen grote en kleine LM's om de moeilijkheid en diversiteit van de trainingsgegevens te verbeteren, waardoor student-LM's veelzijdige en geavanceerde kennis kunnen verwerven. Uitgebreide experimenten tonen aan dat MiniPLM de prestaties van student-LM's op 9 veelgebruikte downstreamtaken verbetert, de taalmodelleringsmogelijkheden verbetert en de berekening van vooraf training vermindert. Het voordeel van MiniPLM strekt zich uit tot grote vooraf trainingsschalen, zoals blijkt uit de extrapoleerbaarheid van de schaalcurven. Verder onderzoek onthult dat MiniPLM KD tussen modelfamilies ondersteunt en het gebruik van vooraf training gegevens verbetert. Ons model, code en gegevens zijn beschikbaar op https://github.com/thu-coai/MiniPLM.
English
Knowledge distillation (KD) is widely used to train small, high-performing
student language models (LMs) using large teacher LMs. While effective in
fine-tuning, KD during pre-training faces challenges in efficiency,
flexibility, and effectiveness. Existing methods either incur high
computational costs due to online teacher inference, require tokenization
matching between teacher and student LMs, or risk losing the difficulty and
diversity of the teacher-generated training data. To address these issues, we
propose MiniPLM, a KD framework for pre-training LMs by refining the training
data distribution with the teacher's knowledge. For efficiency, MiniPLM
performs offline teacher LM inference, allowing KD for multiple student LMs
without adding training-time costs. For flexibility, MiniPLM operates solely on
the training corpus, enabling KD across model families. For effectiveness,
MiniPLM leverages the differences between large and small LMs to enhance the
difficulty and diversity of the training data, helping student LMs acquire
versatile and sophisticated knowledge. Extensive experiments demonstrate that
MiniPLM boosts the student LMs' performance on 9 widely used downstream tasks,
improves the language modeling capabilities, and reduces pre-training
computation. The benefit of MiniPLM extends to large pre-training scales,
evidenced by the extrapolation of the scaling curves. Further analysis reveals
that MiniPLM supports KD across model families and enhances the utilization of
pre-training data. Our model, code, and data are available at
https://github.com/thu-coai/MiniPLM.Summary
AI-Generated Summary
DeepSeek-R1: Het stimuleren van redeneervermogen in LLM's via Reinforcement LearningDeepSeek-R1: Incentivizing Reasoning Capability in LLMs via
Reinforcement Learning
DeepSeek-R1: Het stimuleren van redeneervermogen in LLM's via Reinforcement Learning
DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via
Reinforcement Learning
DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, Zhen Zhang•Jan 22, 2025•3685
Technisch Rapport Qwen2.5Qwen2.5 Technical Report
Technisch Rapport Qwen2.5
Qwen2.5 Technical Report
Qwen, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, Zihan Qiu•Dec 19, 2024•36311
MiniMax-01: Schalen van Foundation Modellen met Bliksem AandachtMiniMax-01: Scaling Foundation Models with Lightning Attention
MiniMax-01: Schalen van Foundation Modellen met Bliksem Aandacht
MiniMax-01: Scaling Foundation Models with Lightning Attention
MiniMax, Aonian Li, Bangwei Gong, Bo Yang, Boji Shan, Chang Liu, Cheng Zhu, Chunhao Zhang, Congchao Guo, Da Chen, Dong Li, Enwei Jiao, Gengxin Li, Guojun Zhang, Haohai Sun, Houze Dong, Jiadai Zhu, Jiaqi Zhuang, Jiayuan Song, Jin Zhu, Jingtao Han, Jingyang Li, Junbin Xie, Junhao Xu, Junjie Yan, Kaishun Zhang, Kecheng Xiao, Kexi Kang, Le Han, Leyang Wang, Lianfei Yu, Liheng Feng, Lin Zheng, Linbo Chai, Long Xing, Meizhi Ju, Mingyuan Chi, Mozhi Zhang, Peikai Huang, Pengcheng Niu, Pengfei Li, Pengyu Zhao, Qi Yang, Qidi Xu, Qiexiang Wang, Qin Wang, Qiuhui Li, Ruitao Leng, Shengmin Shi, Shuqi Yu, Sichen Li, Songquan Zhu, Tao Huang, Tianrun Liang, Weigao Sun, Weixuan Sun, Weiyu Cheng, Wenkai Li, Xiangjun Song, Xiao Su, Xiaodong Han, Xinjie Zhang, Xinzhu Hou, Xu Min, Xun Zou, Xuyang Shen, Yan Gong, Yingjie Zhu, Yipeng Zhou, Yiran Zhong, Yongyi Hu, Yuanxiang Fan, Yue Yu, Yufeng Yang, Yuhao Li, Yunan Huang, Yunji Li, Yunpeng Huang, Yunzhi Xu, Yuxin Mao, Zehan Li, Zekang Li, Zewei Tao, Zewen Ying, Zhaoyang Cong, Zhen Qin, Zhenhua Fan, Zhihang Yu, Zhuo Jiang, Zijia Wu•Jan 14, 2025•2826