Molar: Modelli Linguaggio Multimodali con Allineamento Collaborativo di Filtraggio per un Miglioramento della Raccomandazione Sequenziale
Molar: Multimodal LLMs with Collaborative Filtering Alignment for Enhanced Sequential Recommendation
December 24, 2024
Autori: Yucong Luo, Qitao Qin, Hao Zhang, Mingyue Cheng, Ruiran Yan, Kefan Wang, Jie Ouyang
cs.AI
Abstract
I sistemi di raccomandazione sequenziale (SR) hanno subito un'evoluzione significativa nell'ultimo decennio, passando dal filtraggio collaborativo tradizionale agli approcci di apprendimento profondo e, più recentemente, ai grandi modelli linguistici (LLM). Sebbene l'adozione dei LLM abbia portato a notevoli progressi, questi modelli mancano intrinsecamente di informazioni sul filtraggio collaborativo, basandosi principalmente sui dati di contenuto testuale trascurando altre modalità e quindi non riuscendo a raggiungere prestazioni di raccomandazione ottimali. Per affrontare questa limitazione, proponiamo Molar, un framework di raccomandazione sequenziale multimodale basato su grandi modelli linguistici che integra diverse modalità di contenuto con informazioni ID per catturare segnali collaborativi in modo efficace. Molar utilizza un MLLM per generare rappresentazioni unificate degli elementi da dati sia testuali che non testuali, facilitando una modellazione multimodale completa e arricchendo gli embedding degli elementi. Inoltre, incorpora segnali di filtraggio collaborativo attraverso un meccanismo di post-allineamento, che allinea le rappresentazioni degli utenti da modelli basati sul contenuto e sull'ID, garantendo una personalizzazione precisa e prestazioni robuste. Combinando in modo fluido contenuti multimodali con intuizioni di filtraggio collaborativo, Molar cattura sia gli interessi degli utenti che le semantica contestuale, portando a una maggiore precisione nelle raccomandazioni. Esperimenti estesi confermano che Molar supera significativamente i baselines tradizionali e basati su LLM, evidenziando la sua capacità di utilizzare dati multimodali e segnali collaborativi per compiti di raccomandazione sequenziale. Il codice sorgente è disponibile su https://anonymous.4open.science/r/Molar-8B06/.
English
Sequential recommendation (SR) systems have evolved significantly over the
past decade, transitioning from traditional collaborative filtering to deep
learning approaches and, more recently, to large language models (LLMs). While
the adoption of LLMs has driven substantial advancements, these models
inherently lack collaborative filtering information, relying primarily on
textual content data neglecting other modalities and thus failing to achieve
optimal recommendation performance. To address this limitation, we propose
Molar, a Multimodal large language sequential recommendation framework that
integrates multiple content modalities with ID information to capture
collaborative signals effectively. Molar employs an MLLM to generate unified
item representations from both textual and non-textual data, facilitating
comprehensive multimodal modeling and enriching item embeddings. Additionally,
it incorporates collaborative filtering signals through a post-alignment
mechanism, which aligns user representations from content-based and ID-based
models, ensuring precise personalization and robust performance. By seamlessly
combining multimodal content with collaborative filtering insights, Molar
captures both user interests and contextual semantics, leading to superior
recommendation accuracy. Extensive experiments validate that Molar
significantly outperforms traditional and LLM-based baselines, highlighting its
strength in utilizing multimodal data and collaborative signals for sequential
recommendation tasks. The source code is available at
https://anonymous.4open.science/r/Molar-8B06/.Summary
AI-Generated Summary
DeepSeek-R1: Incentivizzare la capacità di ragionamento nei LLM tramite Apprendimento per RinforzoDeepSeek-R1: Incentivizing Reasoning Capability in LLMs via
Reinforcement Learning
DeepSeek-R1: Incentivizzare la capacità di ragionamento nei LLM tramite Apprendimento per Rinforzo
DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via
Reinforcement Learning
DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, Zhen Zhang•Jan 22, 2025•3685
Rapporto Tecnico Qwen2.5Qwen2.5 Technical Report
Rapporto Tecnico Qwen2.5
Qwen2.5 Technical Report
Qwen, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, Zihan Qiu•Dec 19, 2024•36311
MiniMax-01: Scalare i modelli di base con attenzione lampeggianteMiniMax-01: Scaling Foundation Models with Lightning Attention
MiniMax-01: Scalare i modelli di base con attenzione lampeggiante
MiniMax-01: Scaling Foundation Models with Lightning Attention
MiniMax, Aonian Li, Bangwei Gong, Bo Yang, Boji Shan, Chang Liu, Cheng Zhu, Chunhao Zhang, Congchao Guo, Da Chen, Dong Li, Enwei Jiao, Gengxin Li, Guojun Zhang, Haohai Sun, Houze Dong, Jiadai Zhu, Jiaqi Zhuang, Jiayuan Song, Jin Zhu, Jingtao Han, Jingyang Li, Junbin Xie, Junhao Xu, Junjie Yan, Kaishun Zhang, Kecheng Xiao, Kexi Kang, Le Han, Leyang Wang, Lianfei Yu, Liheng Feng, Lin Zheng, Linbo Chai, Long Xing, Meizhi Ju, Mingyuan Chi, Mozhi Zhang, Peikai Huang, Pengcheng Niu, Pengfei Li, Pengyu Zhao, Qi Yang, Qidi Xu, Qiexiang Wang, Qin Wang, Qiuhui Li, Ruitao Leng, Shengmin Shi, Shuqi Yu, Sichen Li, Songquan Zhu, Tao Huang, Tianrun Liang, Weigao Sun, Weixuan Sun, Weiyu Cheng, Wenkai Li, Xiangjun Song, Xiao Su, Xiaodong Han, Xinjie Zhang, Xinzhu Hou, Xu Min, Xun Zou, Xuyang Shen, Yan Gong, Yingjie Zhu, Yipeng Zhou, Yiran Zhong, Yongyi Hu, Yuanxiang Fan, Yue Yu, Yufeng Yang, Yuhao Li, Yunan Huang, Yunji Li, Yunpeng Huang, Yunzhi Xu, Yuxin Mao, Zehan Li, Zekang Li, Zewei Tao, Zewen Ying, Zhaoyang Cong, Zhen Qin, Zhenhua Fan, Zhihang Yu, Zhuo Jiang, Zijia Wu•Jan 14, 2025•2826