Atténuation de l'hallucination d'objets via une Attention Causale Concentrique
Mitigating Object Hallucination via Concentric Causal Attention
October 21, 2024
Auteurs: Yun Xing, Yiheng Li, Ivan Laptev, Shijian Lu
cs.AI
Résumé
Les récents grands modèles de langage et vision (LVLM) présentent des capacités remarquables de conversation et de raisonnement sans entraînement, étant donné des requêtes multimodales. Cependant, ils souffrent d'hallucinations d'objets, un phénomène où les LVLM ont tendance à générer des réponses textuelles qui ne sont pas factuellement alignées avec les entrées d'image. Notre étude pilote révèle que l'hallucination d'objets est étroitement liée au Codage de Position Rotatif (RoPE), un modèle de modélisation de dépendance positionnelle largement adopté dans les LVLM existants. En raison de la décroissance à long terme dans RoPE, les LVLM ont tendance à halluciner davantage lorsque les indices visuels pertinents sont éloignés des jetons d'instruction dans la séquence d'entrée multimodale. De plus, nous observons un effet similaire lors de l'inversion de l'ordre séquentiel des jetons visuels lors de l'alignement multimodal. Nos tests indiquent que la décroissance à long terme dans RoPE pose des défis aux LVLM lors de la capture des interactions visuelles-instruction sur de longues distances. Nous proposons l'Attention Causale Concentrique (CCA), une stratégie d'alignement positionnel simple mais efficace qui atténue l'impact de la décroissance à long terme de RoPE dans les LVLM en réduisant naturellement la distance relative entre les jetons visuels et d'instruction. Avec CCA, les jetons visuels peuvent mieux interagir avec les jetons d'instruction, améliorant ainsi la capacité de perception du modèle et atténuant l'hallucination d'objets. Sans artifices, notre méthode d'alignement positionnel surpasse de loin les stratégies existantes de mitigation de l'hallucination sur plusieurs référentiels d'hallucination d'objets.
English
Recent Large Vision Language Models (LVLMs) present remarkable zero-shot
conversational and reasoning capabilities given multimodal queries.
Nevertheless, they suffer from object hallucination, a phenomenon where LVLMs
are prone to generate textual responses not factually aligned with image
inputs. Our pilot study reveals that object hallucination is closely tied with
Rotary Position Encoding (RoPE), a widely adopted positional dependency
modeling design in existing LVLMs. Due to the long-term decay in RoPE, LVLMs
tend to hallucinate more when relevant visual cues are distant from instruction
tokens in the multimodal input sequence. Additionally, we observe a similar
effect when reversing the sequential order of visual tokens during multimodal
alignment. Our tests indicate that long-term decay in RoPE poses challenges to
LVLMs while capturing visual-instruction interactions across long distances. We
propose Concentric Causal Attention (CCA), a simple yet effective positional
alignment strategy that mitigates the impact of RoPE long-term decay in LVLMs
by naturally reducing relative distance between visual and instruction tokens.
With CCA, visual tokens can better interact with instruction tokens, thereby
enhancing model's perception capability and alleviating object hallucination.
Without bells and whistles, our positional alignment method surpasses existing
hallucination mitigation strategies by large margins on multiple object
hallucination benchmarks.Summary
AI-Generated Summary
DeepSeek-R1 : Encourager la capacité de raisonnement dans les LLMs via l'apprentissage par renforcementDeepSeek-R1: Incentivizing Reasoning Capability in LLMs via
Reinforcement Learning
DeepSeek-R1 : Encourager la capacité de raisonnement dans les LLMs via l'apprentissage par renforcement
DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via
Reinforcement Learning
DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, Zhen Zhang•Jan 22, 2025•3685
Rapport technique de Qwen2.5Qwen2.5 Technical Report
Rapport technique de Qwen2.5
Qwen2.5 Technical Report
Qwen, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, Zihan Qiu•Dec 19, 2024•36311
MiniMax-01 : Mise à l'échelle des modèles de base avec Attention Éclair.MiniMax-01: Scaling Foundation Models with Lightning Attention
MiniMax-01 : Mise à l'échelle des modèles de base avec Attention Éclair.
MiniMax-01: Scaling Foundation Models with Lightning Attention
MiniMax, Aonian Li, Bangwei Gong, Bo Yang, Boji Shan, Chang Liu, Cheng Zhu, Chunhao Zhang, Congchao Guo, Da Chen, Dong Li, Enwei Jiao, Gengxin Li, Guojun Zhang, Haohai Sun, Houze Dong, Jiadai Zhu, Jiaqi Zhuang, Jiayuan Song, Jin Zhu, Jingtao Han, Jingyang Li, Junbin Xie, Junhao Xu, Junjie Yan, Kaishun Zhang, Kecheng Xiao, Kexi Kang, Le Han, Leyang Wang, Lianfei Yu, Liheng Feng, Lin Zheng, Linbo Chai, Long Xing, Meizhi Ju, Mingyuan Chi, Mozhi Zhang, Peikai Huang, Pengcheng Niu, Pengfei Li, Pengyu Zhao, Qi Yang, Qidi Xu, Qiexiang Wang, Qin Wang, Qiuhui Li, Ruitao Leng, Shengmin Shi, Shuqi Yu, Sichen Li, Songquan Zhu, Tao Huang, Tianrun Liang, Weigao Sun, Weixuan Sun, Weiyu Cheng, Wenkai Li, Xiangjun Song, Xiao Su, Xiaodong Han, Xinjie Zhang, Xinzhu Hou, Xu Min, Xun Zou, Xuyang Shen, Yan Gong, Yingjie Zhu, Yipeng Zhou, Yiran Zhong, Yongyi Hu, Yuanxiang Fan, Yue Yu, Yufeng Yang, Yuhao Li, Yunan Huang, Yunji Li, Yunpeng Huang, Yunzhi Xu, Yuxin Mao, Zehan Li, Zekang Li, Zewei Tao, Zewen Ying, Zhaoyang Cong, Zhen Qin, Zhenhua Fan, Zhihang Yu, Zhuo Jiang, Zijia Wu•Jan 14, 2025•2826