Évaluation automatique interlingue pour l'évaluation des LLM multilingues
Cross-Lingual Auto Evaluation for Assessing Multilingual LLMs
October 17, 2024
Auteurs: Sumanth Doddapaneni, Mohammed Safi Ur Rahman Khan, Dilip Venkatesh, Raj Dabre, Anoop Kunchukuttan, Mitesh M. Khapra
cs.AI
Résumé
L'évaluation du texte généré par machine reste un défi majeur en TAL, en particulier pour les langues autres que l'anglais. Les méthodologies actuelles, incluant les mesures automatisées, les évaluations humaines et les évaluations basées sur les LLM, se concentrent principalement sur l'anglais, révélant ainsi un écart significatif dans les cadres d'évaluation multilingues. Nous introduisons la Suite d'Auto-évaluation Croisée Linguistique (CIA), un cadre extensible comprenant des LLM évaluateurs (Hercule) et un nouvel ensemble de tests (Recon) spécifiquement conçu pour l'évaluation multilingue. Notre ensemble de tests comprend 500 instructions annotées par des humains couvrant diverses capacités de tâches ainsi que des scores de jugement humain dans six langues. Cela permettrait l'étalonnage des LLM multilingues polyvalents et faciliterait la méta-évaluation des LLM évaluateurs. Le modèle proposé, Hercule, est un modèle d'évaluation multilingue qui répond à la rareté des réponses de référence dans la langue cible en apprenant à attribuer des scores aux réponses basés sur des réponses de référence facilement disponibles en anglais. Nos expériences démontrent qu'Hercule est plus étroitement aligné sur les jugements humains par rapport aux modèles propriétaires, démontrant ainsi l'efficacité d'une telle évaluation croisée linguistique dans des scénarios à ressources limitées. De plus, il est également efficace dans l'évaluation zéro-shot sur des langues non vues. Cette étude est la première examen complet de l'évaluation croisée linguistique utilisant des LLM, présentant une approche évolutive et efficace pour l'évaluation multilingue. Tout le code, les ensembles de données et les modèles seront disponibles publiquement pour permettre de nouvelles recherches dans ce domaine important.
English
Evaluating machine-generated text remains a significant challenge in NLP,
especially for non-English languages. Current methodologies, including
automated metrics, human assessments, and LLM-based evaluations, predominantly
focus on English, revealing a significant gap in multilingual evaluation
frameworks. We introduce the Cross Lingual Auto Evaluation (CIA) Suite, an
extensible framework that includes evaluator LLMs (Hercule) and a novel test
set (Recon) specifically designed for multilingual evaluation. Our test set
features 500 human-annotated instructions spanning various task capabilities
along with human judgment scores across six languages. This would enable
benchmarking of general-purpose multilingual LLMs and facilitate
meta-evaluation of Evaluator LLMs. The proposed model, Hercule, is a
cross-lingual evaluation model that addresses the scarcity of reference answers
in the target language by learning to assign scores to responses based on
easily available reference answers in English. Our experiments demonstrate that
Hercule aligns more closely with human judgments compared to proprietary
models, demonstrating the effectiveness of such cross-lingual evaluation in low
resource scenarios. Further, it is also effective in zero-shot evaluation on
unseen languages. This study is the first comprehensive examination of
cross-lingual evaluation using LLMs, presenting a scalable and effective
approach for multilingual assessment. All code, datasets, and models will be
publicly available to enable further research in this important area.Summary
AI-Generated Summary
DeepSeek-R1 : Encourager la capacité de raisonnement dans les LLMs via l'apprentissage par renforcementDeepSeek-R1: Incentivizing Reasoning Capability in LLMs via
Reinforcement Learning
DeepSeek-R1 : Encourager la capacité de raisonnement dans les LLMs via l'apprentissage par renforcement
DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via
Reinforcement Learning
DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, Zhen Zhang•Jan 22, 2025•3685
Rapport technique de Qwen2.5Qwen2.5 Technical Report
Rapport technique de Qwen2.5
Qwen2.5 Technical Report
Qwen, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, Zihan Qiu•Dec 19, 2024•36311
MiniMax-01 : Mise à l'échelle des modèles de base avec Attention Éclair.MiniMax-01: Scaling Foundation Models with Lightning Attention
MiniMax-01 : Mise à l'échelle des modèles de base avec Attention Éclair.
MiniMax-01: Scaling Foundation Models with Lightning Attention
MiniMax, Aonian Li, Bangwei Gong, Bo Yang, Boji Shan, Chang Liu, Cheng Zhu, Chunhao Zhang, Congchao Guo, Da Chen, Dong Li, Enwei Jiao, Gengxin Li, Guojun Zhang, Haohai Sun, Houze Dong, Jiadai Zhu, Jiaqi Zhuang, Jiayuan Song, Jin Zhu, Jingtao Han, Jingyang Li, Junbin Xie, Junhao Xu, Junjie Yan, Kaishun Zhang, Kecheng Xiao, Kexi Kang, Le Han, Leyang Wang, Lianfei Yu, Liheng Feng, Lin Zheng, Linbo Chai, Long Xing, Meizhi Ju, Mingyuan Chi, Mozhi Zhang, Peikai Huang, Pengcheng Niu, Pengfei Li, Pengyu Zhao, Qi Yang, Qidi Xu, Qiexiang Wang, Qin Wang, Qiuhui Li, Ruitao Leng, Shengmin Shi, Shuqi Yu, Sichen Li, Songquan Zhu, Tao Huang, Tianrun Liang, Weigao Sun, Weixuan Sun, Weiyu Cheng, Wenkai Li, Xiangjun Song, Xiao Su, Xiaodong Han, Xinjie Zhang, Xinzhu Hou, Xu Min, Xun Zou, Xuyang Shen, Yan Gong, Yingjie Zhu, Yipeng Zhou, Yiran Zhong, Yongyi Hu, Yuanxiang Fan, Yue Yu, Yufeng Yang, Yuhao Li, Yunan Huang, Yunji Li, Yunpeng Huang, Yunzhi Xu, Yuxin Mao, Zehan Li, Zekang Li, Zewei Tao, Zewen Ying, Zhaoyang Cong, Zhen Qin, Zhenhua Fan, Zhihang Yu, Zhuo Jiang, Zijia Wu•Jan 14, 2025•2826