Lois d'échelle des données dans l'apprentissage par imitation pour la manipulation robotique
Data Scaling Laws in Imitation Learning for Robotic Manipulation
October 24, 2024
Auteurs: Fanqi Lin, Yingdong Hu, Pingyue Sheng, Chuan Wen, Jiacheng You, Yang Gao
cs.AI
Résumé
La mise à l'échelle des données a révolutionné des domaines tels que le traitement du langage naturel et la vision par ordinateur, offrant aux modèles des capacités de généralisation remarquables. Dans cet article, nous examinons si des lois similaires de mise à l'échelle des données existent en robotique, en particulier dans la manipulation robotique, et si une mise à l'échelle appropriée des données peut permettre d'obtenir des politiques de robot à tâche unique pouvant être déployées sans entraînement pour n'importe quel objet de la même catégorie dans n'importe quel environnement. À cette fin, nous menons une étude empirique approfondie sur la mise à l'échelle des données en apprentissage par imitation. En collectant des données dans de nombreux environnements et avec divers objets, nous étudions comment les performances de généralisation d'une politique évoluent avec le nombre d'environnements d'entraînement, d'objets et de démonstrations. Tout au long de notre recherche, nous collectons plus de 40 000 démonstrations et réalisons plus de 15 000 exécutions de robots dans le monde réel selon un protocole d'évaluation rigoureux. Nos résultats révèlent plusieurs conclusions intrigantes : les performances de généralisation de la politique suivent approximativement une relation de loi de puissance avec le nombre d'environnements et d'objets. La diversité des environnements et des objets est bien plus importante que le nombre absolu de démonstrations ; une fois que le nombre de démonstrations par environnement ou objet atteint un certain seuil, des démonstrations supplémentaires ont un effet minimal. Sur la base de ces observations, nous proposons une stratégie efficace de collecte de données. Avec quatre collecteurs de données travaillant pendant une après-midi, nous collectons suffisamment de données pour permettre aux politiques de réaliser environ 90 % de réussite pour deux tâches dans des environnements nouveaux avec des objets inconnus.
English
Data scaling has revolutionized fields like natural language processing and
computer vision, providing models with remarkable generalization capabilities.
In this paper, we investigate whether similar data scaling laws exist in
robotics, particularly in robotic manipulation, and whether appropriate data
scaling can yield single-task robot policies that can be deployed zero-shot for
any object within the same category in any environment. To this end, we conduct
a comprehensive empirical study on data scaling in imitation learning. By
collecting data across numerous environments and objects, we study how a
policy's generalization performance changes with the number of training
environments, objects, and demonstrations. Throughout our research, we collect
over 40,000 demonstrations and execute more than 15,000 real-world robot
rollouts under a rigorous evaluation protocol. Our findings reveal several
intriguing results: the generalization performance of the policy follows a
roughly power-law relationship with the number of environments and objects. The
diversity of environments and objects is far more important than the absolute
number of demonstrations; once the number of demonstrations per environment or
object reaches a certain threshold, additional demonstrations have minimal
effect. Based on these insights, we propose an efficient data collection
strategy. With four data collectors working for one afternoon, we collect
sufficient data to enable the policies for two tasks to achieve approximately
90% success rates in novel environments with unseen objects.Summary
AI-Generated Summary
DeepSeek-R1 : Encourager la capacité de raisonnement dans les LLMs via l'apprentissage par renforcementDeepSeek-R1: Incentivizing Reasoning Capability in LLMs via
Reinforcement Learning
DeepSeek-R1 : Encourager la capacité de raisonnement dans les LLMs via l'apprentissage par renforcement
DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via
Reinforcement Learning
DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, Zhen Zhang•Jan 22, 2025•3745
Rapport technique de Qwen2.5Qwen2.5 Technical Report
Rapport technique de Qwen2.5
Qwen2.5 Technical Report
Qwen, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, Zihan Qiu•Dec 19, 2024•36411
MiniMax-01 : Mise à l'échelle des modèles de base avec Attention Éclair.MiniMax-01: Scaling Foundation Models with Lightning Attention
MiniMax-01 : Mise à l'échelle des modèles de base avec Attention Éclair.
MiniMax-01: Scaling Foundation Models with Lightning Attention
MiniMax, Aonian Li, Bangwei Gong, Bo Yang, Boji Shan, Chang Liu, Cheng Zhu, Chunhao Zhang, Congchao Guo, Da Chen, Dong Li, Enwei Jiao, Gengxin Li, Guojun Zhang, Haohai Sun, Houze Dong, Jiadai Zhu, Jiaqi Zhuang, Jiayuan Song, Jin Zhu, Jingtao Han, Jingyang Li, Junbin Xie, Junhao Xu, Junjie Yan, Kaishun Zhang, Kecheng Xiao, Kexi Kang, Le Han, Leyang Wang, Lianfei Yu, Liheng Feng, Lin Zheng, Linbo Chai, Long Xing, Meizhi Ju, Mingyuan Chi, Mozhi Zhang, Peikai Huang, Pengcheng Niu, Pengfei Li, Pengyu Zhao, Qi Yang, Qidi Xu, Qiexiang Wang, Qin Wang, Qiuhui Li, Ruitao Leng, Shengmin Shi, Shuqi Yu, Sichen Li, Songquan Zhu, Tao Huang, Tianrun Liang, Weigao Sun, Weixuan Sun, Weiyu Cheng, Wenkai Li, Xiangjun Song, Xiao Su, Xiaodong Han, Xinjie Zhang, Xinzhu Hou, Xu Min, Xun Zou, Xuyang Shen, Yan Gong, Yingjie Zhu, Yipeng Zhou, Yiran Zhong, Yongyi Hu, Yuanxiang Fan, Yue Yu, Yufeng Yang, Yuhao Li, Yunan Huang, Yunji Li, Yunpeng Huang, Yunzhi Xu, Yuxin Mao, Zehan Li, Zekang Li, Zewei Tao, Zewen Ying, Zhaoyang Cong, Zhen Qin, Zhenhua Fan, Zhihang Yu, Zhuo Jiang, Zijia Wu•Jan 14, 2025•2846