SemiEvol: Halbüberwachtes Feintuning für die Anpassung von LLM
SemiEvol: Semi-supervised Fine-tuning for LLM Adaptation
October 17, 2024
Autoren: Junyu Luo, Xiao Luo, Xiusi Chen, Zhiping Xiao, Wei Ju, Ming Zhang
cs.AI
Zusammenfassung
Das überwachte Feintuning (SFT) ist entscheidend, um große Sprachmodelle (LLMs) an eine spezifische Domäne oder Aufgabe anzupassen. Allerdings steht in praktischen Anwendungen nur eine begrenzte Menge an gelabelten Daten zur Verfügung, was eine ernsthafte Herausforderung für das SFT darstellt, um zufriedenstellende Ergebnisse zu erzielen. Daher wird ein dateneffizientes Framework dringend erwartet, das gelabelte und ungelabelte Daten vollständig für das Feintuning von LLMs nutzen kann. Zu diesem Zweck stellen wir ein semi-überwachtes Feintuning-Framework namens SemiEvol für die Anpassung von LLMs in einer Propagate-and-Select-Manier vor. Für die Wissensverbreitung übernimmt SemiEvol einen zweistufigen Ansatz, bei dem Wissen von gelabelten Daten auf ungelabelte Daten durch sowohl In-Gewicht- als auch In-Kontext-Methoden übertragen wird. Für die Wissensauswahl integriert SemiEvol einen kollaborativen Lernmechanismus, der qualitativ hochwertigere Pseudoantwortproben auswählt. Wir führten Experimente mit GPT-4o-mini und Llama-3.1 auf sieben allgemeinen oder domänenspezifischen Datensätzen durch, die signifikante Verbesserungen der Modellleistung auf den Ziel-Daten zeigten. Darüber hinaus verglichen wir SemiEvol mit SFT- und Selbstentwicklungs-Methoden und betonten dessen Praktikabilität in hybriden Datenszenarien.
English
Supervised fine-tuning (SFT) is crucial in adapting large language models
(LLMs) to a specific domain or task. However, only a limited amount of labeled
data is available in practical applications, which poses a severe challenge for
SFT in yielding satisfactory results. Therefore, a data-efficient framework
that can fully exploit labeled and unlabeled data for LLM fine-tuning is highly
anticipated. Towards this end, we introduce a semi-supervised fine-tuning
framework named SemiEvol for LLM adaptation from a propagate-and-select manner.
For knowledge propagation, SemiEvol adopts a bi-level approach, propagating
knowledge from labeled data to unlabeled data through both in-weight and
in-context methods. For knowledge selection, SemiEvol incorporates a
collaborative learning mechanism, selecting higher-quality pseudo-response
samples. We conducted experiments using GPT-4o-mini and Llama-3.1 on seven
general or domain-specific datasets, demonstrating significant improvements in
model performance on target data. Furthermore, we compared SemiEvol with SFT
and self-evolution methods, highlighting its practicality in hybrid data
scenarios.Summary
AI-Generated Summary
DeepSeek-R1: Anreizung der Fähigkeit zur Schlussfolgerung in LLMs durch
Reinforcement LearningDeepSeek-R1: Incentivizing Reasoning Capability in LLMs via
Reinforcement Learning
DeepSeek-R1: Anreizung der Fähigkeit zur Schlussfolgerung in LLMs durch
Reinforcement Learning
DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via
Reinforcement Learning
DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, Zhen Zhang•Jan 22, 2025•3685
Qwen2.5 Technischer BerichtQwen2.5 Technical Report
Qwen2.5 Technischer Bericht
Qwen2.5 Technical Report
Qwen, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, Zihan Qiu•Dec 19, 2024•36311
MiniMax-01: Skalierung von Grundlagenmodellen mit Blitz-AufmerksamkeitMiniMax-01: Scaling Foundation Models with Lightning Attention
MiniMax-01: Skalierung von Grundlagenmodellen mit Blitz-Aufmerksamkeit
MiniMax-01: Scaling Foundation Models with Lightning Attention
MiniMax, Aonian Li, Bangwei Gong, Bo Yang, Boji Shan, Chang Liu, Cheng Zhu, Chunhao Zhang, Congchao Guo, Da Chen, Dong Li, Enwei Jiao, Gengxin Li, Guojun Zhang, Haohai Sun, Houze Dong, Jiadai Zhu, Jiaqi Zhuang, Jiayuan Song, Jin Zhu, Jingtao Han, Jingyang Li, Junbin Xie, Junhao Xu, Junjie Yan, Kaishun Zhang, Kecheng Xiao, Kexi Kang, Le Han, Leyang Wang, Lianfei Yu, Liheng Feng, Lin Zheng, Linbo Chai, Long Xing, Meizhi Ju, Mingyuan Chi, Mozhi Zhang, Peikai Huang, Pengcheng Niu, Pengfei Li, Pengyu Zhao, Qi Yang, Qidi Xu, Qiexiang Wang, Qin Wang, Qiuhui Li, Ruitao Leng, Shengmin Shi, Shuqi Yu, Sichen Li, Songquan Zhu, Tao Huang, Tianrun Liang, Weigao Sun, Weixuan Sun, Weiyu Cheng, Wenkai Li, Xiangjun Song, Xiao Su, Xiaodong Han, Xinjie Zhang, Xinzhu Hou, Xu Min, Xun Zou, Xuyang Shen, Yan Gong, Yingjie Zhu, Yipeng Zhou, Yiran Zhong, Yongyi Hu, Yuanxiang Fan, Yue Yu, Yufeng Yang, Yuhao Li, Yunan Huang, Yunji Li, Yunpeng Huang, Yunzhi Xu, Yuxin Mao, Zehan Li, Zekang Li, Zewei Tao, Zewen Ying, Zhaoyang Cong, Zhen Qin, Zhenhua Fan, Zhihang Yu, Zhuo Jiang, Zijia Wu•Jan 14, 2025•2826