Entschlüsselung der Dunklen Materie: Spezialisierte Sparse Autoencoder zur Interpretation seltener Konzepte in Grundlagenmodellen
Decoding Dark Matter: Specialized Sparse Autoencoders for Interpreting Rare Concepts in Foundation Models
November 1, 2024
Autoren: Aashiq Muhamed, Mona Diab, Virginia Smith
cs.AI
Zusammenfassung
Das Verständnis und die Minderung der potenziellen Risiken, die mit Grundlagenmodellen (FMs) verbunden sind, hängen von der Entwicklung effektiver Interpretationsmethoden ab. Sparse Autoencoder (SAEs) haben sich als vielversprechendes Werkzeug zur Entflechtung von FM-Repräsentationen herausgestellt, kämpfen jedoch damit, seltene, aber entscheidende Konzepte in den Daten zu erfassen. Wir stellen Spezialisierte Sparse Autoencoder (SSAEs) vor, die darauf ausgelegt sind, diese schwer fassbaren "dunklen Materie"-Merkmale zu beleuchten, indem sie sich auf spezifische Subdomänen konzentrieren. Wir präsentieren ein praktisches Rezept zur Schulung von SSAEs, das die Wirksamkeit der dichten Rückgewinnung für die Datenauswahl und die Vorteile der geneigten empirischen Risikominimierung als Schulungsziel zur Verbesserung des Konzeptrückrufs zeigt. Unsere Bewertung von SSAEs anhand standardmäßiger Metriken wie nachgelagerter Perplexität und L_0-Spärlichkeit zeigt, dass sie effektiv subdomänenspezifische Randkonzepte erfassen und die Fähigkeiten von allgemeinen SAEs übertreffen. Wir präsentieren die praktische Nützlichkeit von SSAEs anhand einer Fallstudie zum Bias in Bios-Datensatz, bei der SSAEs eine um 12,5\% höhere Klassifizierungsgenauigkeit der schlechtesten Gruppe erreichen, wenn sie zur Entfernung irreführender Geschlechterinformationen eingesetzt werden. SSAEs bieten eine leistungsstarke neue Perspektive, um einen Blick in die inneren Arbeitsweisen von FMs in Subdomänen zu werfen.
English
Understanding and mitigating the potential risks associated with foundation
models (FMs) hinges on developing effective interpretability methods. Sparse
Autoencoders (SAEs) have emerged as a promising tool for disentangling FM
representations, but they struggle to capture rare, yet crucial concepts in the
data. We introduce Specialized Sparse Autoencoders (SSAEs), designed to
illuminate these elusive dark matter features by focusing on specific
subdomains. We present a practical recipe for training SSAEs, demonstrating the
efficacy of dense retrieval for data selection and the benefits of Tilted
Empirical Risk Minimization as a training objective to improve concept recall.
Our evaluation of SSAEs on standard metrics, such as downstream perplexity and
L_0 sparsity, show that they effectively capture subdomain tail concepts,
exceeding the capabilities of general-purpose SAEs. We showcase the practical
utility of SSAEs in a case study on the Bias in Bios dataset, where SSAEs
achieve a 12.5\% increase in worst-group classification accuracy when applied
to remove spurious gender information. SSAEs provide a powerful new lens for
peering into the inner workings of FMs in subdomains.Summary
AI-Generated Summary
DeepSeek-R1: Anreizung der Fähigkeit zur Schlussfolgerung in LLMs durch
Reinforcement LearningDeepSeek-R1: Incentivizing Reasoning Capability in LLMs via
Reinforcement Learning
DeepSeek-R1: Anreizung der Fähigkeit zur Schlussfolgerung in LLMs durch
Reinforcement Learning
DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via
Reinforcement Learning
DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, Zhen Zhang•Jan 22, 2025•3735
Qwen2.5 Technischer BerichtQwen2.5 Technical Report
Qwen2.5 Technischer Bericht
Qwen2.5 Technical Report
Qwen, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, Zihan Qiu•Dec 19, 2024•36311
MiniMax-01: Skalierung von Grundlagenmodellen mit Blitz-AufmerksamkeitMiniMax-01: Scaling Foundation Models with Lightning Attention
MiniMax-01: Skalierung von Grundlagenmodellen mit Blitz-Aufmerksamkeit
MiniMax-01: Scaling Foundation Models with Lightning Attention
MiniMax, Aonian Li, Bangwei Gong, Bo Yang, Boji Shan, Chang Liu, Cheng Zhu, Chunhao Zhang, Congchao Guo, Da Chen, Dong Li, Enwei Jiao, Gengxin Li, Guojun Zhang, Haohai Sun, Houze Dong, Jiadai Zhu, Jiaqi Zhuang, Jiayuan Song, Jin Zhu, Jingtao Han, Jingyang Li, Junbin Xie, Junhao Xu, Junjie Yan, Kaishun Zhang, Kecheng Xiao, Kexi Kang, Le Han, Leyang Wang, Lianfei Yu, Liheng Feng, Lin Zheng, Linbo Chai, Long Xing, Meizhi Ju, Mingyuan Chi, Mozhi Zhang, Peikai Huang, Pengcheng Niu, Pengfei Li, Pengyu Zhao, Qi Yang, Qidi Xu, Qiexiang Wang, Qin Wang, Qiuhui Li, Ruitao Leng, Shengmin Shi, Shuqi Yu, Sichen Li, Songquan Zhu, Tao Huang, Tianrun Liang, Weigao Sun, Weixuan Sun, Weiyu Cheng, Wenkai Li, Xiangjun Song, Xiao Su, Xiaodong Han, Xinjie Zhang, Xinzhu Hou, Xu Min, Xun Zou, Xuyang Shen, Yan Gong, Yingjie Zhu, Yipeng Zhou, Yiran Zhong, Yongyi Hu, Yuanxiang Fan, Yue Yu, Yufeng Yang, Yuhao Li, Yunan Huang, Yunji Li, Yunpeng Huang, Yunzhi Xu, Yuxin Mao, Zehan Li, Zekang Li, Zewei Tao, Zewen Ying, Zhaoyang Cong, Zhen Qin, Zhenhua Fan, Zhihang Yu, Zhuo Jiang, Zijia Wu•Jan 14, 2025•2836