GaussianAnything: Interaktive Punktewolken-Latenzdiffusion für die 3D-Generierung

GaussianAnything: Interactive Point Cloud Latent Diffusion for 3D Generation

November 12, 2024
Autoren: Yushi Lan, Shangchen Zhou, Zhaoyang Lyu, Fangzhou Hong, Shuai Yang, Bo Dai, Xingang Pan, Chen Change Loy
cs.AI

Zusammenfassung

Obwohl die Erzeugung von 3D-Inhalten erhebliche Fortschritte gemacht hat, stehen bestehende Methoden immer noch vor Herausforderungen bei Eingabeformaten, dem latenten Raumdesign und Ausgaberepräsentationen. Dieses Paper stellt ein neuartiges 3D-Generierungs-Framework vor, das diese Herausforderungen angeht und skalierbare, hochwertige 3D-Generierung mit einem interaktiven Punktewolken-strukturierten Latenten Raum bietet. Unser Framework verwendet einen Variationalen Autoencoder (VAE) mit mehreren Ansichten von RGB-D(epth)-N(ormal)-Renderings als Eingabe und nutzt ein einzigartiges latenten Raumdesign, das 3D-Forminformationen bewahrt, und integriert ein kaskadiertes latentes Diffusionsmodell zur verbesserten Form-Textur-Entflechtung. Die vorgeschlagene Methode, GaussianAnything, unterstützt multimodale bedingte 3D-Generierung, was Punktewolke, Bildunterschrift und Einzel-/Mehr-Ansicht-Bildeingaben ermöglicht. Bemerkenswert ermöglicht der neu vorgeschlagene latente Raum eine natürliche Geometrie-Textur-Entflechtung und erlaubt somit 3D-bewusstes Bearbeiten. Experimentelle Ergebnisse zeigen die Wirksamkeit unseres Ansatzes auf mehreren Datensätzen und übertreffen bestehende Methoden sowohl in text- als auch bildbedingter 3D-Generierung.
English
While 3D content generation has advanced significantly, existing methods still face challenges with input formats, latent space design, and output representations. This paper introduces a novel 3D generation framework that addresses these challenges, offering scalable, high-quality 3D generation with an interactive Point Cloud-structured Latent space. Our framework employs a Variational Autoencoder (VAE) with multi-view posed RGB-D(epth)-N(ormal) renderings as input, using a unique latent space design that preserves 3D shape information, and incorporates a cascaded latent diffusion model for improved shape-texture disentanglement. The proposed method, GaussianAnything, supports multi-modal conditional 3D generation, allowing for point cloud, caption, and single/multi-view image inputs. Notably, the newly proposed latent space naturally enables geometry-texture disentanglement, thus allowing 3D-aware editing. Experimental results demonstrate the effectiveness of our approach on multiple datasets, outperforming existing methods in both text- and image-conditioned 3D generation.

Summary

AI-Generated Summary

Paper Overview

This paper introduces the GAUSSIANANYTHING framework, which leverages a cascaded 3D diffusion pipeline to generate high-quality and editable Surfel Gaussians. The approach enables scalable, high-quality 3D generation using an interactive point cloud-structured latent space. It outperforms existing methods in text and image-conditioned 3D generation.

Core Contribution

The key innovation lies in the introduction of a novel latent 3D diffusion model for generating high-quality Surfel Gaussians using a single model. The framework supports multi-modality conditioned 3D generation and offers improved shape-texture disentanglement for enhanced 3D-aware editing capabilities.

Research Context

This research significantly advances the field of 3D generation by proposing a comprehensive framework that excels in text and image-conditioned 3D generation. The utilization of a unique latent space design and cascaded diffusion models sets a new standard for 3D generation quality and flexibility.

Keywords

Variational Autoencoder (VAE), 3D diffusion model, Surfel Gaussians, Latent space, 3D generation, Text-conditioned generation, Image-conditioned generation

Background

The paper addresses the need for high-quality and editable 3D generation by introducing the GAUSSIANANYTHING framework. The research aims to overcome limitations in existing methods by leveraging innovative techniques such as cascaded diffusion models and interactive latent spaces.

Research Gap

Existing 3D generation methods lack the ability to produce high-quality and editable 3D assets efficiently. The paper fills this gap by introducing a novel approach that excels in generating Surfel Gaussians with enhanced shape-texture disentanglement.

Technical Challenges

Challenges in 3D generation include maintaining shape-texture fidelity, scalability, and editability. The paper tackles these challenges by employing a cascaded 3D diffusion pipeline and a structured latent space design.

Prior Approaches

Previous methods for 3D generation have shown limitations in producing high-quality and editable 3D assets. The GAUSSIANANYTHING framework builds upon these approaches by introducing a novel latent 3D diffusion model for superior 3D generation capabilities.

Methodology

The research methodology involves utilizing a VAE architecture for the encoder and a Transformer architecture for the decoder. Techniques such as 3D-aware attention, diffusion training pipelines, and specific design choices like DiT architecture are employed to enhance 3D reconstruction and generation.

Theoretical Foundation

The methodology is grounded in VAE and Transformer architectures for efficient 3D reconstruction and generation. The use of diffusion models and structured latent spaces forms the theoretical basis for achieving high-quality Surfel Gaussians.

Technical Architecture

The technical architecture includes specialized encoder, decoder, and upsampler designs tailored for effective 3D reconstruction. The incorporation of DiT architecture and diffusion training pipelines enhances the quality and editability of the generated 3D assets.

Implementation Details

Specific implementations involve utilizing a modified version of the LDM-Rombach encoder, Transformer blocks for upsampling, and DiT-B/2 architecture due to VRAM constraints. Detailed training parameters and metrics are crucial for the successful implementation of the proposed methodology.

Innovation Points

The innovation lies in the efficient 3D reconstruction and generation achieved through the VAE and Transformer architectures. The use of diffusion models enhances the quality of 3D assets, while Objaverse data aids in training and creating high-quality 3D instances.

Experimental Validation

The experimental validation involves using high-quality data from Objaverse for training and ground-truth camera positions, rendered multi-view images, normals, depth maps, and camera positions for training. Various architectures and implementation details are explored to ensure efficient 3D reconstruction and generation.

Setup

The experimental setup includes training with Objaverse data and utilizing ground-truth camera positions and rendered multi-view images for training purposes. Specific architectures and implementation details are crucial for achieving efficient 3D reconstruction and generation.

Metrics

Evaluation metrics such as FID, KID, MUSIQ, P-FID, P-KID, COV, and MMD are employed to assess the quality of the generated 3D assets. Rendering metrics and 3D quality metrics play a significant role in quantitatively evaluating the proposed methodology.

Results

The proposed method demonstrates superior performance in 3D generation compared to existing approaches, showcasing state-of-the-art performance across various 3D metrics. The effectiveness of cascaded 3D diffusion and latent 3D space manipulation is highlighted through qualitative and quantitative assessments.

Comparative Analysis

Comparisons with other methods, including Single-Image-to-3D and Multi-View-Images-to-3D approaches, reveal the strengths of the proposed methodology. Ablation studies are conducted to evaluate the impact of design decisions on the overall performance of the method.

Impact and Implications

The GAUSSIANANYTHING framework presents a significant advancement in 3D generation, offering high-quality and editable Surfel Gaussians through a cascaded 3D diffusion pipeline. The method's effectiveness in text and image-conditioned 3D generation opens up new possibilities for interactive 3D editing and content creation.

Key Findings

The key findings include the efficient 3D reconstruction and generation capabilities of the proposed methodology, the use of diffusion models for high-quality 3D asset generation, and the superior performance of GAUSSIANANYTHING in comparison to existing methods.

Limitations

Limitations such as blurry textures in complex scenes are acknowledged, prompting discussions on potential solutions and future research directions. Addressing these limitations is crucial for further enhancing the quality and applicability of the proposed framework.

Future Directions

Future research opportunities include refining texture reconstruction in challenging scenarios, exploring advanced editing capabilities in the 3D space, and addressing potential ethical concerns related to the misuse of the technology for deceptive purposes.

Practical Significance

The practical significance of the GAUSSIANANYTHING framework lies in its ability to generate high-quality and editable 3D assets, opening up opportunities for various real-world applications such as content creation, virtual environments, and interactive media production.

Ausgewählte Artikel

DeepSeek-R1: Anreizung der Fähigkeit zur Schlussfolgerung in LLMs durch Reinforcement Learning
DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, Zhen ZhangJan 22, 20253685

Qwen2.5 Technischer Bericht
Qwen2.5 Technical Report

Qwen, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, Zihan QiuDec 19, 202436311

MiniMax-01: Skalierung von Grundlagenmodellen mit Blitz-Aufmerksamkeit
MiniMax-01: Scaling Foundation Models with Lightning Attention

MiniMax, Aonian Li, Bangwei Gong, Bo Yang, Boji Shan, Chang Liu, Cheng Zhu, Chunhao Zhang, Congchao Guo, Da Chen, Dong Li, Enwei Jiao, Gengxin Li, Guojun Zhang, Haohai Sun, Houze Dong, Jiadai Zhu, Jiaqi Zhuang, Jiayuan Song, Jin Zhu, Jingtao Han, Jingyang Li, Junbin Xie, Junhao Xu, Junjie Yan, Kaishun Zhang, Kecheng Xiao, Kexi Kang, Le Han, Leyang Wang, Lianfei Yu, Liheng Feng, Lin Zheng, Linbo Chai, Long Xing, Meizhi Ju, Mingyuan Chi, Mozhi Zhang, Peikai Huang, Pengcheng Niu, Pengfei Li, Pengyu Zhao, Qi Yang, Qidi Xu, Qiexiang Wang, Qin Wang, Qiuhui Li, Ruitao Leng, Shengmin Shi, Shuqi Yu, Sichen Li, Songquan Zhu, Tao Huang, Tianrun Liang, Weigao Sun, Weixuan Sun, Weiyu Cheng, Wenkai Li, Xiangjun Song, Xiao Su, Xiaodong Han, Xinjie Zhang, Xinzhu Hou, Xu Min, Xun Zou, Xuyang Shen, Yan Gong, Yingjie Zhu, Yipeng Zhou, Yiran Zhong, Yongyi Hu, Yuanxiang Fan, Yue Yu, Yufeng Yang, Yuhao Li, Yunan Huang, Yunji Li, Yunpeng Huang, Yunzhi Xu, Yuxin Mao, Zehan Li, Zekang Li, Zewei Tao, Zewen Ying, Zhaoyang Cong, Zhen Qin, Zhenhua Fan, Zhihang Yu, Zhuo Jiang, Zijia WuJan 14, 20252836

PDF216November 18, 2024