ChatPaper.aiChatPaper

Crowdsource, Crawl, or Generate? Creating SEA-VL, a Multicultural Vision-Language Dataset for Southeast Asia

March 10, 2025
Authors: Samuel Cahyawijaya, Holy Lovenia, Joel Ruben Antony Moniz, Tack Hwa Wong, Mohammad Rifqi Farhansyah, Thant Thiri Maung, Frederikus Hudi, David Anugraha, Muhammad Ravi Shulthan Habibi, Muhammad Reza Qorib, Amit Agarwal, Joseph Marvin Imperial, Hitesh Laxmichand Patel, Vicky Feliren, Bahrul Ilmi Nasution, Manuel Antonio Rufino, Genta Indra Winata, Rian Adam Rajagede, Carlos Rafael Catalan, Mohamed Fazli Imam, Priyaranjan Pattnayak, Salsabila Zahirah Pranida, Kevin Pratama, Yeshil Bangera, Adisai Na-Thalang, Patricia Nicole Monderin, Yueqi Song, Christian Simon, Lynnette Hui Xian Ng, Richardy Lobo' Sapan, Taki Hasan Rafi, Bin Wang, Supryadi, Kanyakorn Veerakanjana, Piyalitt Ittichaiwong, Matthew Theodore Roque, Karissa Vincentio, Takdanai Kreangphet, Phakphum Artkaew, Kadek Hendrawan Palgunadi, Yanzhi Yu, Rochana Prih Hastuti, William Nixon, Mithil Bangera, Adrian Xuan Wei Lim, Aye Hninn Khine, Hanif Muhammad Zhafran, Teddy Ferdinan, Audra Aurora Izzani, Ayushman Singh, Evan, Jauza Akbar Krito, Michael Anugraha, Fenal Ashokbhai Ilasariya, Haochen Li, John Amadeo Daniswara, Filbert Aurelian Tjiaranata, Eryawan Presma Yulianrifat, Can Udomcharoenchaikit, Fadil Risdian Ansori, Mahardika Krisna Ihsani, Giang Nguyen, Anab Maulana Barik, Dan John Velasco, Rifo Ahmad Genadi, Saptarshi Saha, Chengwei Wei, Isaiah Flores, Kenneth Ko Han Chen, Anjela Gail Santos, Wan Shen Lim, Kaung Si Phyo, Tim Santos, Meisyarah Dwiastuti, Jiayun Luo, Jan Christian Blaise Cruz, Ming Shan Hee, Ikhlasul Akmal Hanif, M. Alif Al Hakim, Muhammad Rizky Sya'ban, Kun Kerdthaisong, Lester James V. Miranda, Fajri Koto, Tirana Noor Fatyanosa, Alham Fikri Aji, Jostin Jerico Rosal, Jun Kevin, Robert Wijaya, Onno P. Kampman, Ruochen Zhang, Börje F. Karlsson, Peerat Limkonchotiwat
cs.AI

Abstract

Southeast Asia (SEA) is a region of extraordinary linguistic and cultural diversity, yet it remains significantly underrepresented in vision-language (VL) research. This often results in artificial intelligence (AI) models that fail to capture SEA cultural nuances. To fill this gap, we present SEA-VL, an open-source initiative dedicated to developing high-quality, culturally relevant data for SEA languages. By involving contributors from SEA countries, SEA-VL aims to ensure better cultural relevance and diversity, fostering greater inclusivity of underrepresented languages in VL research. Beyond crowdsourcing, our initiative goes one step further in the exploration of the automatic collection of culturally relevant images through crawling and image generation. First, we find that image crawling achieves approximately ~85% cultural relevance while being more cost- and time-efficient than crowdsourcing. Second, despite the substantial progress in generative vision models, synthetic images remain unreliable in accurately reflecting SEA cultures. The generated images often fail to reflect the nuanced traditions and cultural contexts of the region. Collectively, we gather 1.28M SEA culturally-relevant images, more than 50 times larger than other existing datasets. Through SEA-VL, we aim to bridge the representation gap in SEA, fostering the development of more inclusive AI systems that authentically represent diverse cultures across SEA.

Summary

AI-Generated Summary

PDF894March 12, 2025