Edicho:野外环境中的一致图像编辑
Edicho: Consistent Image Editing in the Wild
December 30, 2024
作者: Qingyan Bai, Hao Ouyang, Yinghao Xu, Qiuyu Wang, Ceyuan Yang, Ka Leong Cheng, Yujun Shen, Qifeng Chen
cs.AI
摘要
作为一个经过验证的需求,跨野外图像的一致编辑仍然是一个技术挑战,由于各种无法控制的因素,如物体姿势、光照条件和摄影环境。Edicho提出了一种基于扩散模型的无需训练的解决方案,其基本设计原则是利用显式图像对应关系来指导编辑。具体来说,关键组件包括一个注意力操纵模块和一个精心设计的无分类器引导(CFG)去噪策略,两者都考虑了预估的对应关系。这种推断时算法具有即插即用的特性,并与大多数基于扩散的编辑方法兼容,如ControlNet和BrushNet。大量结果展示了Edicho在不同设置下进行一致跨图像编辑的有效性。我们将发布代码以促进未来的研究。
English
As a verified need, consistent editing across in-the-wild images remains a
technical challenge arising from various unmanageable factors, like object
poses, lighting conditions, and photography environments. Edicho steps in with
a training-free solution based on diffusion models, featuring a fundamental
design principle of using explicit image correspondence to direct editing.
Specifically, the key components include an attention manipulation module and a
carefully refined classifier-free guidance (CFG) denoising strategy, both of
which take into account the pre-estimated correspondence. Such an
inference-time algorithm enjoys a plug-and-play nature and is compatible to
most diffusion-based editing methods, such as ControlNet and BrushNet.
Extensive results demonstrate the efficacy of Edicho in consistent cross-image
editing under diverse settings. We will release the code to facilitate future
studies.Summary
AI-Generated Summary