GAN已死;GAN永存!一个现代GAN基准
The GAN is dead; long live the GAN! A Modern GAN Baseline
January 9, 2025
作者: Yiwen Huang, Aaron Gokaslan, Volodymyr Kuleshov, James Tompkin
cs.AI
摘要
有一种广泛流传的说法认为生成对抗网络(GANs)难以训练,文献中的GAN架构充斥着经验性技巧。我们提供证据反驳这一说法,并以更加原则性的方式构建了现代GAN基准线。首先,我们推导出一个行为良好的正则化相对论GAN损失,解决了以往通过一堆临时技巧来应对的模式丢失和不收敛问题。我们对我们的损失进行数学分析,并证明它具有局部收敛保证,这与大多数现有的相对论损失不同。其次,我们的新损失使我们能够放弃所有临时技巧,并用现代架构替换常见GAN中使用的过时骨干结构。以StyleGAN2为例,我们提出了一种简化和现代化的路线图,形成了一种新的极简基准线——R3GAN。尽管简单,我们的方法在FFHQ、ImageNet、CIFAR和Stacked MNIST数据集上均超越了StyleGAN2,并且与最先进的GAN和扩散模型相比表现优异。
English
There is a widely-spread claim that GANs are difficult to train, and GAN
architectures in the literature are littered with empirical tricks. We provide
evidence against this claim and build a modern GAN baseline in a more
principled manner. First, we derive a well-behaved regularized relativistic GAN
loss that addresses issues of mode dropping and non-convergence that were
previously tackled via a bag of ad-hoc tricks. We analyze our loss
mathematically and prove that it admits local convergence guarantees, unlike
most existing relativistic losses. Second, our new loss allows us to discard
all ad-hoc tricks and replace outdated backbones used in common GANs with
modern architectures. Using StyleGAN2 as an example, we present a roadmap of
simplification and modernization that results in a new minimalist baseline --
R3GAN. Despite being simple, our approach surpasses StyleGAN2 on FFHQ,
ImageNet, CIFAR, and Stacked MNIST datasets, and compares favorably against
state-of-the-art GANs and diffusion models.Summary
AI-Generated Summary