Open-Sora计划:开源大型视频生成模型
Open-Sora Plan: Open-Source Large Video Generation Model
November 28, 2024
作者: Bin Lin, Yunyang Ge, Xinhua Cheng, Zongjian Li, Bin Zhu, Shaodong Wang, Xianyi He, Yang Ye, Shenghai Yuan, Liuhan Chen, Tanghui Jia, Junwu Zhang, Zhenyu Tang, Yatian Pang, Bin She, Cen Yan, Zhiheng Hu, Xiaoyi Dong, Lin Chen, Zhang Pan, Xing Zhou, Shaoling Dong, Yonghong Tian, Li Yuan
cs.AI
摘要
我们介绍了Open-Sora计划,这是一个旨在为生成所需高分辨率视频提供大型生成模型的开源项目,其基于各种用户输入。我们的项目包括用于整个视频生成过程的多个组件,包括Wavelet-Flow变分自动编码器、联合图像视频Skiparse去噪器和各种条件控制器。此外,我们设计了许多用于高效训练和推断的辅助策略,并提出了用于获取所需高质量数据的多维数据整理流程。由于高效的思路,我们的Open-Sora计划在定性和定量评估中均取得了令人印象深刻的视频生成结果。我们希望我们的精心设计和实践经验能激发视频生成研究社区。我们所有的代码和模型权重都可以在https://github.com/PKU-YuanGroup/Open-Sora-Plan 上公开获取。
English
We introduce Open-Sora Plan, an open-source project that aims to contribute a
large generation model for generating desired high-resolution videos with long
durations based on various user inputs. Our project comprises multiple
components for the entire video generation process, including a Wavelet-Flow
Variational Autoencoder, a Joint Image-Video Skiparse Denoiser, and various
condition controllers. Moreover, many assistant strategies for efficient
training and inference are designed, and a multi-dimensional data curation
pipeline is proposed for obtaining desired high-quality data. Benefiting from
efficient thoughts, our Open-Sora Plan achieves impressive video generation
results in both qualitative and quantitative evaluations. We hope our careful
design and practical experience can inspire the video generation research
community. All our codes and model weights are publicly available at
https://github.com/PKU-YuanGroup/Open-Sora-Plan.Summary
AI-Generated Summary