生成但验证:通过回顾性重采样减少视觉语言模型中的幻觉现象
Generate, but Verify: Reducing Hallucination in Vision-Language Models with Retrospective Resampling
April 17, 2025
作者: Tsung-Han Wu, Heekyung Lee, Jiaxin Ge, Joseph E. Gonzalez, Trevor Darrell, David M. Chan
cs.AI
摘要
视觉语言模型(VLMs)在视觉理解方面表现出色,但常常面临视觉幻觉问题,即生成对不存在物体、动作或概念的描述,这在安全关键应用中构成重大风险。现有的幻觉缓解方法通常遵循两种范式之一:生成调整,即修改解码行为以使文本与视觉输入对齐;以及事后验证,即通过外部模型评估并修正输出。尽管有效,生成调整方法往往依赖启发式规则且缺乏修正机制,而事后验证则较为复杂,通常需要多个模型,并倾向于拒绝输出而非精炼它们。在本研究中,我们引入了REVERSE,一个统一框架,将幻觉感知训练与实时自我验证相结合。通过利用包含超过130万半合成样本的新幻觉验证数据集,以及一种新颖的推理时回顾重采样技术,我们的方法使VLMs能够在生成过程中检测幻觉并动态修正这些幻觉。评估结果显示,REVERSE在减少幻觉方面达到了最先进水平,在CHAIR-MSCOCO上比现有最佳方法高出12%,在HaloQuest上高出28%。我们的数据集、模型及代码可在以下网址获取:https://reverse-vlm.github.io。
English
Vision-Language Models (VLMs) excel at visual understanding but often suffer
from visual hallucinations, where they generate descriptions of nonexistent
objects, actions, or concepts, posing significant risks in safety-critical
applications. Existing hallucination mitigation methods typically follow one of
two paradigms: generation adjustment, which modifies decoding behavior to align
text with visual inputs, and post-hoc verification, where external models
assess and correct outputs. While effective, generation adjustment methods
often rely on heuristics and lack correction mechanisms, while post-hoc
verification is complicated, typically requiring multiple models and tending to
reject outputs rather than refine them. In this work, we introduce REVERSE, a
unified framework that integrates hallucination-aware training with on-the-fly
self-verification. By leveraging a new hallucination-verification dataset
containing over 1.3M semi-synthetic samples, along with a novel inference-time
retrospective resampling technique, our approach enables VLMs to both detect
hallucinations during generation and dynamically revise those hallucinations.
Our evaluations show that REVERSE achieves state-of-the-art hallucination
reduction, outperforming the best existing methods by up to 12% on CHAIR-MSCOCO
and 28% on HaloQuest. Our dataset, model, and code are available at:
https://reverse-vlm.github.io.Summary
AI-Generated Summary