ChatPaper.aiChatPaper

代理性取决于框架。

Agency Is Frame-Dependent

February 6, 2025
作者: David Abel, André Barreto, Michael Bowling, Will Dabney, Shi Dong, Steven Hansen, Anna Harutyunyan, Khimya Khetarpal, Clare Lyle, Razvan Pascanu, Georgios Piliouras, Doina Precup, Jonathan Richens, Mark Rowland, Tom Schaul, Satinder Singh
cs.AI

摘要

代理性是系统引导结果朝向目标的能力,是生物学、哲学、认知科学和人工智能研究的中心课题。确定系统是否表现出代理性是一个极具挑战性的问题:例如,Dennett(1989)强调了决定岩石、恒温器或机器人是否具有代理性的难题。我们从强化学习的视角探讨这一难题,认为代理性从根本上是依赖于参考框架的:对系统代理性的任何测量必须相对于一个参考框架进行。我们通过提出一个哲学论证来支持这一观点,即Barandiaran等人(2009)和Moreno(2018)提出的代理性基本属性本身是依赖于参考框架的。我们得出结论,任何关于代理性的基础科学都需要考虑参考框架的影响,并讨论了这一观点对强化学习的影响。
English
Agency is a system's capacity to steer outcomes toward a goal, and is a central topic of study across biology, philosophy, cognitive science, and artificial intelligence. Determining if a system exhibits agency is a notoriously difficult question: Dennett (1989), for instance, highlights the puzzle of determining which principles can decide whether a rock, a thermostat, or a robot each possess agency. We here address this puzzle from the viewpoint of reinforcement learning by arguing that agency is fundamentally frame-dependent: Any measurement of a system's agency must be made relative to a reference frame. We support this claim by presenting a philosophical argument that each of the essential properties of agency proposed by Barandiaran et al. (2009) and Moreno (2018) are themselves frame-dependent. We conclude that any basic science of agency requires frame-dependence, and discuss the implications of this claim for reinforcement learning.

Summary

AI-Generated Summary

PDF224February 10, 2025