潜藏何物?利用扩散潜空间实现领域泛化
What's in a Latent? Leveraging Diffusion Latent Space for Domain Generalization
March 9, 2025
作者: Xavier Thomas, Deepti Ghadiyaram
cs.AI
摘要
领域泛化旨在开发能够适应新颖且未见过的数据分布的模型。在本研究中,我们探讨了模型架构与预训练目标如何影响特征的丰富性,并提出了一种有效利用这些特征进行领域泛化的方法。具体而言,给定一个预训练的特征空间,我们首先以无监督的方式发现捕捉领域特定变化的潜在领域结构,称之为伪域。接着,我们通过将这些互补的伪域表示融入现有分类器,使其更易于适应多样化的未见测试域。我们分析了不同预训练特征空间在捕获领域特定差异方面的差异。实证研究表明,在缺乏明确领域标签的情况下,扩散模型提取的特征在区分领域方面表现卓越,并能捕捉细微的领域特定信息。在五个数据集上,我们展示了这一极其简单的框架相较于标准基线经验风险最小化(ERM),在未见域上的泛化能力提升显著,最高测试准确率提升超过4%。尤为重要的是,我们的方法在训练过程中无需访问领域标签,却超越了大多数依赖领域标签的算法。
English
Domain Generalization aims to develop models that can generalize to novel and
unseen data distributions. In this work, we study how model architectures and
pre-training objectives impact feature richness and propose a method to
effectively leverage them for domain generalization. Specifically, given a
pre-trained feature space, we first discover latent domain structures, referred
to as pseudo-domains, that capture domain-specific variations in an
unsupervised manner. Next, we augment existing classifiers with these
complementary pseudo-domain representations making them more amenable to
diverse unseen test domains. We analyze how different pre-training feature
spaces differ in the domain-specific variances they capture. Our empirical
studies reveal that features from diffusion models excel at separating domains
in the absence of explicit domain labels and capture nuanced domain-specific
information. On 5 datasets, we show that our very simple framework improves
generalization to unseen domains by a maximum test accuracy improvement of over
4% compared to the standard baseline Empirical Risk Minimization (ERM).
Crucially, our method outperforms most algorithms that access domain labels
during training.Summary
AI-Generated Summary