TEXGen:一种用于网格纹理的生成扩散模型
TEXGen: a Generative Diffusion Model for Mesh Textures
November 22, 2024
作者: Xin Yu, Ze Yuan, Yuan-Chen Guo, Ying-Tian Liu, JianHui Liu, Yangguang Li, Yan-Pei Cao, Ding Liang, Xiaojuan Qi
cs.AI
摘要
高质量的纹理贴图对于逼真的3D资产渲染至关重要,然而鲜有研究直接探索在纹理空间中学习,尤其是在大规模数据集上。在这项工作中,我们摆脱了依赖预训练的2D扩散模型在测试时优化3D纹理的传统方法。相反,我们专注于在UV纹理空间本身学习的基本问题。我们首次训练了一个大型扩散模型,能够以前馈方式直接生成高分辨率的纹理贴图。为了促进在高分辨率UV空间中的高效学习,我们提出了一种可扩展的网络架构,交替在UV贴图上进行卷积,并在点云上使用注意力层。利用这种架构设计,我们训练了一个拥有7亿参数的扩散模型,可以生成由文本提示和单视图图像指导的UV纹理贴图。一经训练,我们的模型自然支持各种扩展应用,包括文本引导的纹理修复、稀疏视图纹理完成以及文本驱动的纹理合成。项目页面位于http://cvmi-lab.github.io/TEXGen/。
English
While high-quality texture maps are essential for realistic 3D asset
rendering, few studies have explored learning directly in the texture space,
especially on large-scale datasets. In this work, we depart from the
conventional approach of relying on pre-trained 2D diffusion models for
test-time optimization of 3D textures. Instead, we focus on the fundamental
problem of learning in the UV texture space itself. For the first time, we
train a large diffusion model capable of directly generating high-resolution
texture maps in a feed-forward manner. To facilitate efficient learning in
high-resolution UV spaces, we propose a scalable network architecture that
interleaves convolutions on UV maps with attention layers on point clouds.
Leveraging this architectural design, we train a 700 million parameter
diffusion model that can generate UV texture maps guided by text prompts and
single-view images. Once trained, our model naturally supports various extended
applications, including text-guided texture inpainting, sparse-view texture
completion, and text-driven texture synthesis. Project page is at
http://cvmi-lab.github.io/TEXGen/.Summary
AI-Generated Summary