基于指针网络的多标签多类意图联合提取和检测方法
A Pointer Network-based Approach for Joint Extraction and Detection of Multi-Label Multi-Class Intents
October 29, 2024
作者: Ankan Mullick, Sombit Bose, Abhilash Nandy, Gajula Sai Chaitanya, Pawan Goyal
cs.AI
摘要
在面向任务的对话系统中,意图检测对于解释用户查询并提供适当回应至关重要。现有研究主要解决了单一意图的简单查询,缺乏处理具有多个意图和提取不同意图范围的复杂查询的有效系统。此外,缺乏多语言、多意图数据集也是一个显著问题。本研究解决了三个关键任务:从查询中提取多个意图范围、检测多个意图以及开发多语言多标签意图数据集。我们引入了一个新颖的多标签多类别意图检测数据集(MLMCID-dataset),从现有基准数据集中精心筛选而来。我们还提出了一个基于指针网络的架构(MLMCID),以六元组的形式提取意图范围并检测多个意图,标签包括粗粒度和细粒度。全面的分析表明,相对于各种数据集上的基准方法,我们基于指针网络的系统在准确性和F1分数方面表现出优越性。
English
In task-oriented dialogue systems, intent detection is crucial for
interpreting user queries and providing appropriate responses. Existing
research primarily addresses simple queries with a single intent, lacking
effective systems for handling complex queries with multiple intents and
extracting different intent spans. Additionally, there is a notable absence of
multilingual, multi-intent datasets. This study addresses three critical tasks:
extracting multiple intent spans from queries, detecting multiple intents, and
developing a multi-lingual multi-label intent dataset. We introduce a novel
multi-label multi-class intent detection dataset (MLMCID-dataset) curated from
existing benchmark datasets. We also propose a pointer network-based
architecture (MLMCID) to extract intent spans and detect multiple intents with
coarse and fine-grained labels in the form of sextuplets. Comprehensive
analysis demonstrates the superiority of our pointer network-based system over
baseline approaches in terms of accuracy and F1-score across various datasets.Summary
AI-Generated Summary