面向人形机器人的视觉灵巧操作:从仿真到现实的强化学习
Sim-to-Real Reinforcement Learning for Vision-Based Dexterous Manipulation on Humanoids
February 27, 2025
作者: Toru Lin, Kartik Sachdev, Linxi Fan, Jitendra Malik, Yuke Zhu
cs.AI
摘要
强化学习在实现人类乃至超人类水平的能力方面,已在多种问题领域展现出令人瞩目的成果,但在灵巧机器人操控方面的成功仍显有限。本研究探讨了将强化学习应用于解决人形机器人上的一系列接触密集型操控任务时所面临的关键挑战。我们引入了一系列创新技术,通过实证验证来克服这些已识别的挑战。我们的主要贡献包括:一个自动化的真实到模拟调优模块,使模拟环境更贴近现实世界;一个通用的奖励设计方案,简化了针对长期接触密集型操控任务的奖励工程;一种分而治之的蒸馏过程,在保持模拟到现实性能的同时,提高了硬探索问题的样本效率;以及稀疏与密集物体表示的混合使用,以弥合模拟到现实的感知差距。我们在三项人形灵巧操控任务上展示了积极的结果,并对每项技术进行了消融研究。我们的工作展示了一种成功利用模拟到现实强化学习来掌握人形灵巧操控的方法,实现了强大的泛化能力和高性能,而无需依赖人类示范。
English
Reinforcement learning has delivered promising results in achieving human- or
even superhuman-level capabilities across diverse problem domains, but success
in dexterous robot manipulation remains limited. This work investigates the key
challenges in applying reinforcement learning to solve a collection of
contact-rich manipulation tasks on a humanoid embodiment. We introduce novel
techniques to overcome the identified challenges with empirical validation. Our
main contributions include an automated real-to-sim tuning module that brings
the simulated environment closer to the real world, a generalized reward design
scheme that simplifies reward engineering for long-horizon contact-rich
manipulation tasks, a divide-and-conquer distillation process that improves the
sample efficiency of hard-exploration problems while maintaining sim-to-real
performance, and a mixture of sparse and dense object representations to bridge
the sim-to-real perception gap. We show promising results on three humanoid
dexterous manipulation tasks, with ablation studies on each technique. Our work
presents a successful approach to learning humanoid dexterous manipulation
using sim-to-real reinforcement learning, achieving robust generalization and
high performance without the need for human demonstration.Summary
AI-Generated Summary