ChatPaper.aiChatPaper

HoT:高亮思维链,用于从输入中引用支持性事实

HoT: Highlighted Chain of Thought for Referencing Supporting Facts from Inputs

March 3, 2025
作者: Tin Nguyen, Logan Bolton, Mohammad Reza Taesiri, Anh Totti Nguyen
cs.AI

摘要

大型语言模型(LLMs)的一个显著弱点是其倾向于生成非事实性陈述。当回应中混杂着事实与非事实内容时,人类在验证并据此做出准确决策时面临挑战。为应对此问题,我们提出了高亮思维链提示法(Highlighted Chain-of-Thought Prompting, HoT),这一技术旨在引导LLMs生成带有XML标签的回应,将事实与查询中提供的信息相锚定。具体而言,给定一个输入问题,LLMs首先会重新格式化问题,添加XML标签以突出关键事实,随后生成回应,并在引用输入事实的部分进行高亮显示。值得注意的是,在少量示例的设定下,HoT在从算术、阅读理解到逻辑推理等17项广泛任务上均优于传统的思维链提示法(CoT)。当要求人类验证LLM的回应时,高亮显示帮助时间有限的参与者更准确、高效地识别出LLM何时正确。然而,令人意外的是,当LLM出错时,HoT往往会让用户误以为答案是正确的。
English
An Achilles heel of Large Language Models (LLMs) is their tendency to hallucinate non-factual statements. A response mixed of factual and non-factual statements poses a challenge for humans to verify and accurately base their decisions on. To combat this problem, we propose Highlighted Chain-of-Thought Prompting (HoT), a technique for prompting LLMs to generate responses with XML tags that ground facts to those provided in the query. That is, given an input question, LLMs would first re-format the question to add XML tags highlighting key facts, and then, generate a response with highlights over the facts referenced from the input. Interestingly, in few-shot settings, HoT outperforms vanilla chain of thought prompting (CoT) on a wide range of 17 tasks from arithmetic, reading comprehension to logical reasoning. When asking humans to verify LLM responses, highlights help time-limited participants to more accurately and efficiently recognize when LLMs are correct. Yet, surprisingly, when LLMs are wrong, HoTs tend to make users believe that an answer is correct.

Summary

AI-Generated Summary

PDF435March 6, 2025