预测Hugging Face平台上开源AI模型的增长趋势
Forecasting Open-Weight AI Model Growth on Hugging Face
February 21, 2025
作者: Kushal Raj Bhandari, Pin-Yu Chen, Jianxi Gao
cs.AI
摘要
随着开源权重AI领域的持续扩展——包括模型开发、重大投资及用户兴趣的激增——预测哪些模型将最终推动创新并塑造AI生态系统变得愈发重要。借鉴科学文献中的引用动态,我们提出了一种量化开源权重模型影响力演变的框架。具体而言,我们采用了Wang等人为科学引用设计的模型,通过三个关键参数——即时性、持久性和相对适应性——来追踪一个开源权重模型的微调模型累计数量。我们的研究结果表明,这种引用式方法能有效捕捉开源权重模型采纳的多样化轨迹,大多数模型拟合良好,而异常值则揭示了独特的使用模式或使用量的突然跃升。
English
As the open-weight AI landscape continues to proliferate-with model
development, significant investment, and user interest-it becomes increasingly
important to predict which models will ultimately drive innovation and shape AI
ecosystems. Building on parallels with citation dynamics in scientific
literature, we propose a framework to quantify how an open-weight model's
influence evolves. Specifically, we adapt the model introduced by Wang et al.
for scientific citations, using three key parameters-immediacy, longevity, and
relative fitness-to track the cumulative number of fine-tuned models of an
open-weight model. Our findings reveal that this citation-style approach can
effectively capture the diverse trajectories of open-weight model adoption,
with most models fitting well and outliers indicating unique patterns or abrupt
jumps in usage.Summary
AI-Generated Summary