MatAnyone:稳定视频抠图与一致记忆传播
MatAnyone: Stable Video Matting with Consistent Memory Propagation
January 24, 2025
作者: Peiqing Yang, Shangchen Zhou, Jixin Zhao, Qingyi Tao, Chen Change Loy
cs.AI
摘要
不依赖辅助的人类视频抠像方法通常仅依赖输入帧,在处理复杂或模糊背景时常常遇到困难。为了解决这一问题,我们提出了MatAnyone,这是一个专为目标指定视频抠像而设计的强大框架。具体而言,我们基于基于记忆的范式,引入了一个一致的记忆传播模块,通过区域自适应记忆融合,自适应地整合前一帧的记忆。这确保了核心区域的语义稳定性,同时保留了沿着物体边界的细粒度细节。为了进行稳健的训练,我们提出了一个更大、高质量和多样化的视频抠像数据集。此外,我们还融入了一种新颖的训练策略,有效利用大规模分割数据,提升抠像的稳定性。通过这种新的网络设计、数据集和训练策略,MatAnyone在各种真实场景中提供了强大而准确的视频抠像结果,优于现有方法。
English
Auxiliary-free human video matting methods, which rely solely on input
frames, often struggle with complex or ambiguous backgrounds. To address this,
we propose MatAnyone, a robust framework tailored for target-assigned video
matting. Specifically, building on a memory-based paradigm, we introduce a
consistent memory propagation module via region-adaptive memory fusion, which
adaptively integrates memory from the previous frame. This ensures semantic
stability in core regions while preserving fine-grained details along object
boundaries. For robust training, we present a larger, high-quality, and diverse
dataset for video matting. Additionally, we incorporate a novel training
strategy that efficiently leverages large-scale segmentation data, boosting
matting stability. With this new network design, dataset, and training
strategy, MatAnyone delivers robust and accurate video matting results in
diverse real-world scenarios, outperforming existing methods.Summary
AI-Generated Summary