ChatPaper.aiChatPaper

百川全向1.5 技术报告

Baichuan-Omni-1.5 Technical Report

January 26, 2025
作者: Yadong Li, Jun Liu, Tao Zhang, Tao Zhang, Song Chen, Tianpeng Li, Zehuan Li, Lijun Liu, Lingfeng Ming, Guosheng Dong, Da Pan, Chong Li, Yuanbo Fang, Dongdong Kuang, Mingrui Wang, Chenglin Zhu, Youwei Zhang, Hongyu Guo, Fengyu Zhang, Yuran Wang, Bowen Ding, Wei Song, Xu Li, Yuqi Huo, Zheng Liang, Shusen Zhang, Xin Wu, Shuai Zhao, Linchu Xiong, Yozhen Wu, Jiahui Ye, Wenhao Lu, Bowen Li, Yan Zhang, Yaqi Zhou, Xin Chen, Lei Su, Hongda Zhang, Fuzhong Chen, Xuezhen Dong, Na Nie, Zhiying Wu, Bin Xiao, Ting Li, Shunya Dang, Ping Zhang, Yijia Sun, Jincheng Wu, Jinjie Yang, Xionghai Lin, Zhi Ma, Kegeng Wu, Jia li, Aiyuan Yang, Hui Liu, Jianqiang Zhang, Xiaoxi Chen, Guangwei Ai, Wentao Zhang, Yicong Chen, Xiaoqin Huang, Kun Li, Wenjing Luo, Yifei Duan, Lingling Zhu, Ran Xiao, Zhe Su, Jiani Pu, Dian Wang, Xu Jia, Tianyu Zhang, Mengyu Ai, Mang Wang, Yujing Qiao, Lei Zhang, Yanjun Shen, Fan Yang, Miao Zhen, Yijie Zhou, Mingyang Chen, Fei Li, Chenzheng Zhu, Keer Lu, Yaqi Zhao, Hao Liang, Youquan Li, Yanzhao Qin, Linzhuang Sun, Jianhua Xu, Haoze Sun, Mingan Lin, Zenan Zhou, Weipeng Chen
cs.AI

摘要

我们介绍了Baichuan-Omni-1.5,这是一个全模态模型,不仅具有全模态理解能力,还提供端到端的音频生成能力。为了实现跨模态的流畅高质量交互,而不损害任何模态的能力,我们优化了三个关键方面。首先,我们为多模态数据建立了全面的数据清洗和合成流水线,获得约500B高质量数据(文本、音频和视觉)。其次,设计了一个音频标记器(Baichuan-Audio-Tokenizer),用于从音频中捕获语义和声学信息,实现与MLLM的无缝集成和增强兼容性。最后,我们设计了一个多阶段训练策略,逐步整合多模态对齐和多任务微调,确保各模态之间有效协同作用。Baichuan-Omni-1.5在综合全模态能力方面领先于当代模型(包括GPT4o-mini和MiniCPM-o 2.6)。值得注意的是,它在各种多模态医学基准测试中取得了与Qwen2-VL-72B等领先模型可比的结果。
English
We introduce Baichuan-Omni-1.5, an omni-modal model that not only has omni-modal understanding capabilities but also provides end-to-end audio generation capabilities. To achieve fluent and high-quality interaction across modalities without compromising the capabilities of any modality, we prioritized optimizing three key aspects. First, we establish a comprehensive data cleaning and synthesis pipeline for multimodal data, obtaining about 500B high-quality data (text, audio, and vision). Second, an audio-tokenizer (Baichuan-Audio-Tokenizer) has been designed to capture both semantic and acoustic information from audio, enabling seamless integration and enhanced compatibility with MLLM. Lastly, we designed a multi-stage training strategy that progressively integrates multimodal alignment and multitask fine-tuning, ensuring effective synergy across all modalities. Baichuan-Omni-1.5 leads contemporary models (including GPT4o-mini and MiniCPM-o 2.6) in terms of comprehensive omni-modal capabilities. Notably, it achieves results comparable to leading models such as Qwen2-VL-72B across various multimodal medical benchmarks.

Summary

AI-Generated Summary

PDF622January 28, 2025