使用分段交叉注意力和内容丰富的视频数据整理生成长视频传播
Long Video Diffusion Generation with Segmented Cross-Attention and Content-Rich Video Data Curation
December 2, 2024
作者: Xin Yan, Yuxuan Cai, Qiuyue Wang, Yuan Zhou, Wenhao Huang, Huan Yang
cs.AI
摘要
我们介绍了Presto,这是一种新颖的视频扩散模型,旨在生成具有长程连贯性和丰富内容的15秒视频。将视频生成方法扩展到长时间段以保持情景多样性带来了重大挑战。为了解决这个问题,我们提出了分段交叉注意(SCA)策略,它将隐藏状态沿时间维度分割为段,使每个段可以与相应的子标题进行交叉注意。SCA不需要额外的参数,可以无缝地融入当前基于DiT的架构中。为了促进高质量的长视频生成,我们构建了LongTake-HD数据集,包括261k个内容丰富的视频,具有情景连贯性,并附带整体视频标题和五个渐进式子标题。实验表明,我们的Presto在VBench语义得分上达到了78.5%,在动态度上达到了100%,优于现有最先进的视频生成方法。这表明我们提出的Presto显著增强了内容丰富性,保持了长程连贯性,并捕捉了复杂的文本细节。更多详细信息请查看我们的项目页面:https://presto-video.github.io/。
English
We introduce Presto, a novel video diffusion model designed to generate
15-second videos with long-range coherence and rich content. Extending video
generation methods to maintain scenario diversity over long durations presents
significant challenges. To address this, we propose a Segmented Cross-Attention
(SCA) strategy, which splits hidden states into segments along the temporal
dimension, allowing each segment to cross-attend to a corresponding
sub-caption. SCA requires no additional parameters, enabling seamless
incorporation into current DiT-based architectures. To facilitate high-quality
long video generation, we build the LongTake-HD dataset, consisting of 261k
content-rich videos with scenario coherence, annotated with an overall video
caption and five progressive sub-captions. Experiments show that our Presto
achieves 78.5% on the VBench Semantic Score and 100% on the Dynamic Degree,
outperforming existing state-of-the-art video generation methods. This
demonstrates that our proposed Presto significantly enhances content richness,
maintains long-range coherence, and captures intricate textual details. More
details are displayed on our project page: https://presto-video.github.io/.Summary
AI-Generated Summary