关于U-Net改进在腹膜后肿瘤分割性能的研究
A Study on the Performance of U-Net Modifications in Retroperitoneal Tumor Segmentation
February 1, 2025
作者: Moein Heidari, Ehsan Khodapanah Aghdam, Alexander Manzella, Daniel Hsu, Rebecca Scalabrino, Wenjin Chen, David J. Foran, Ilker Hacihaliloglu
cs.AI
摘要
腹膜后区存在多种肿瘤,包括罕见的良性和恶性类型,由于其罕见性和与重要结构的接近,给诊断和治疗带来挑战。由于肿瘤形状不规则,估计肿瘤体积很困难,而手动分割耗时。使用U-Net及其变体进行自动分割,融合了视觉Transformer(ViT)元素,显示出有希望的结果,但面临高计算需求的挑战。为解决这一问题,像Mamba State Space Model(SSM)和Extended Long-Short Term Memory(xLSTM)这样的架构通过处理长距离依赖关系以及较低资源消耗提供了高效的解决方案。本研究评估了U-Net增强功能,包括CNN、ViT、Mamba和xLSTM,在一组新的内部CT数据集和一个公共器官分割数据集上。提出的ViLU-Net模型整合了Vi块以改善分割效果。结果突显了xLSTM在U-Net框架中的高效性。该代码可在GitHub上公开访问。
English
The retroperitoneum hosts a variety of tumors, including rare benign and
malignant types, which pose diagnostic and treatment challenges due to their
infrequency and proximity to vital structures. Estimating tumor volume is
difficult due to their irregular shapes, and manual segmentation is
time-consuming. Automatic segmentation using U-Net and its variants,
incorporating Vision Transformer (ViT) elements, has shown promising results
but struggles with high computational demands. To address this, architectures
like the Mamba State Space Model (SSM) and Extended Long-Short Term Memory
(xLSTM) offer efficient solutions by handling long-range dependencies with
lower resource consumption. This study evaluates U-Net enhancements, including
CNN, ViT, Mamba, and xLSTM, on a new in-house CT dataset and a public organ
segmentation dataset. The proposed ViLU-Net model integrates Vi-blocks for
improved segmentation. Results highlight xLSTM's efficiency in the U-Net
framework. The code is publicly accessible on GitHub.Summary
AI-Generated Summary