通过张量化连接进化多目标优化与GPU加速
Bridging Evolutionary Multiobjective Optimization and GPU Acceleration via Tensorization
March 26, 2025
作者: Zhenyu Liang, Hao Li, Naiwei Yu, Kebin Sun, Ran Cheng
cs.AI
摘要
在过去的二十年里,进化多目标优化(EMO)取得了显著进展。然而,随着问题规模和复杂性的增加,传统EMO算法因并行性和可扩展性不足而面临显著的性能限制。尽管大多数研究集中于通过算法设计来应对这些挑战,但硬件加速方面却鲜有关注,这导致EMO算法与GPU等先进计算设备之间存在着明显的鸿沟。为弥合这一差距,我们提出通过张量化方法在GPU上并行化EMO算法。通过采用张量化,EMO算法的数据结构和操作被转化为简洁的张量表示,从而无缝实现GPU计算的自动利用。我们通过将这一方法应用于三种代表性EMO算法——NSGA-III、MOEA/D和HypE,展示了其有效性。为全面评估我们的方法,我们引入了一个基于GPU加速物理引擎的多目标机器人控制基准测试。实验结果表明,与基于CPU的版本相比,张量化后的EMO算法实现了高达1113倍的加速,同时保持了解决方案的质量,并能有效将种群规模扩展至数十万。此外,张量化EMO算法高效处理了复杂的多目标机器人控制任务,生成了具有多样化行为的高质量解决方案。源代码可在https://github.com/EMI-Group/evomo获取。
English
Evolutionary multiobjective optimization (EMO) has made significant strides
over the past two decades. However, as problem scales and complexities
increase, traditional EMO algorithms face substantial performance limitations
due to insufficient parallelism and scalability. While most work has focused on
algorithm design to address these challenges, little attention has been given
to hardware acceleration, thereby leaving a clear gap between EMO algorithms
and advanced computing devices, such as GPUs. To bridge the gap, we propose to
parallelize EMO algorithms on GPUs via the tensorization methodology. By
employing tensorization, the data structures and operations of EMO algorithms
are transformed into concise tensor representations, which seamlessly enables
automatic utilization of GPU computing. We demonstrate the effectiveness of our
approach by applying it to three representative EMO algorithms: NSGA-III,
MOEA/D, and HypE. To comprehensively assess our methodology, we introduce a
multiobjective robot control benchmark using a GPU-accelerated physics engine.
Our experiments show that the tensorized EMO algorithms achieve speedups of up
to 1113x compared to their CPU-based counterparts, while maintaining solution
quality and effectively scaling population sizes to hundreds of thousands.
Furthermore, the tensorized EMO algorithms efficiently tackle complex
multiobjective robot control tasks, producing high-quality solutions with
diverse behaviors. Source codes are available at
https://github.com/EMI-Group/evomo.Summary
AI-Generated Summary