風格友好的 SNR 取樣器用於風格驅動生成
Style-Friendly SNR Sampler for Style-Driven Generation
November 22, 2024
作者: Jooyoung Choi, Chaehun Shin, Yeongtak Oh, Heeseung Kim, Sungroh Yoon
cs.AI
摘要
最近的大規模擴散模型能夠生成高質量圖像,但在學習新的、個性化的藝術風格方面遇到困難,這限制了獨特風格模板的創建。利用參考圖像進行微調是最有前途的方法,但通常盲目地使用用於預訓練的目標和噪聲水平分佈,導致次優風格對齊。我們提出了友好風格的信噪比取樣器,該方法在微調期間積極將信噪比(SNR)分佈轉向更高的噪聲水平,以便專注於風格特徵出現的噪聲水平。這使模型能夠更好地捕捉獨特風格,生成風格對齊度更高的圖像。我們的方法使擴散模型能夠學習並共享新的“風格模板”,增強個性化內容創作。我們展示了生成個人水彩畫、極簡扁平漫畫、3D 渲染、多面板圖像和帶有文本的迷因等風格的能力,從而擴大了風格驅動生成的範圍。
English
Recent large-scale diffusion models generate high-quality images but struggle
to learn new, personalized artistic styles, which limits the creation of unique
style templates. Fine-tuning with reference images is the most promising
approach, but it often blindly utilizes objectives and noise level
distributions used for pre-training, leading to suboptimal style alignment. We
propose the Style-friendly SNR sampler, which aggressively shifts the
signal-to-noise ratio (SNR) distribution toward higher noise levels during
fine-tuning to focus on noise levels where stylistic features emerge. This
enables models to better capture unique styles and generate images with higher
style alignment. Our method allows diffusion models to learn and share new
"style templates", enhancing personalized content creation. We demonstrate the
ability to generate styles such as personal watercolor paintings, minimal flat
cartoons, 3D renderings, multi-panel images, and memes with text, thereby
broadening the scope of style-driven generation.Summary
AI-Generated Summary