通過文本到圖像 RGBA 實例生成生成組合場景
Generating Compositional Scenes via Text-to-image RGBA Instance Generation
November 16, 2024
作者: Alessandro Fontanella, Petru-Daniel Tudosiu, Yongxin Yang, Shifeng Zhang, Sarah Parisot
cs.AI
摘要
文字到圖像擴散生成模型能夠生成高質量圖像,但需要耗費大量時間進行提示工程。通過引入佈局條件,可以提高可控性,然而現有方法缺乏佈局編輯能力和對象屬性的精細控制。多層生成的概念具有潛力來解決這些限制,然而同時生成圖像實例和場景構成會限制對對象屬性的精細控制、在3D空間中的相對位置和場景操作能力。在這項工作中,我們提出了一種新穎的多階段生成範式,旨在實現對對象屬性、靈活性和互動性的精細控制。為確保對實例屬性的控制,我們設計了一種新穎的訓練範式,以適應一個擴散模型,生成帶有透明信息的獨立場景組件作為RGBA圖像。為了構建復雜圖像,我們利用這些預生成的實例,並引入一個多層合成生成過程,平滑地將組件組裝在逼真的場景中。我們的實驗表明,我們的RGBA擴散模型能夠生成多樣且高質量的實例,並能精確控制對象屬性。通過多層合成,我們展示了我們的方法允許從高度復雜的提示中構建和操作圖像,對對象外觀和位置具有精細控制,比競爭方法具有更高程度的控制。
English
Text-to-image diffusion generative models can generate high quality images at
the cost of tedious prompt engineering. Controllability can be improved by
introducing layout conditioning, however existing methods lack layout editing
ability and fine-grained control over object attributes. The concept of
multi-layer generation holds great potential to address these limitations,
however generating image instances concurrently to scene composition limits
control over fine-grained object attributes, relative positioning in 3D space
and scene manipulation abilities. In this work, we propose a novel multi-stage
generation paradigm that is designed for fine-grained control, flexibility and
interactivity. To ensure control over instance attributes, we devise a novel
training paradigm to adapt a diffusion model to generate isolated scene
components as RGBA images with transparency information. To build complex
images, we employ these pre-generated instances and introduce a multi-layer
composite generation process that smoothly assembles components in realistic
scenes. Our experiments show that our RGBA diffusion model is capable of
generating diverse and high quality instances with precise control over object
attributes. Through multi-layer composition, we demonstrate that our approach
allows to build and manipulate images from highly complex prompts with
fine-grained control over object appearance and location, granting a higher
degree of control than competing methods.Summary
AI-Generated Summary