SelfSplat:無需姿勢和三維先驗的通用化三維高斯點陣化
SelfSplat: Pose-Free and 3D Prior-Free Generalizable 3D Gaussian Splatting
November 26, 2024
作者: Gyeongjin Kang, Jisang Yoo, Jihyeon Park, Seungtae Nam, Hyeonsoo Im, Sangheon Shin, Sangpil Kim, Eunbyung Park
cs.AI
摘要
我們提出了SelfSplat,一種新穎的3D高斯Splatting模型,旨在從未擺姿勢的多視圖圖像中執行無姿勢和無3D先驗的通用3D重建。這些設置由於缺乏地面真實數據、學習的幾何信息以及需要實現精確的3D重建而無需微調,因此本質上是不透明的,這使得傳統方法難以實現高質量的結果。我們的模型通過有效地將明確的3D表示與自監督深度和姿勢估計技術相結合,從而實現姿勢準確性和3D重建質量的相互改進。此外,我們還結合了一個匹配感知的姿勢估計網絡和深度細化模塊,以增強視圖之間的幾何一致性,確保更準確和穩定的3D重建。為了展示我們方法的性能,我們在大規模真實世界數據集上進行了評估,包括RealEstate10K、ACID和DL3DV。SelfSplat在外觀和幾何質量方面均優於先前的最先進方法,同時展現了強大的跨數據集泛化能力。廣泛的消融研究和分析也驗證了我們提出方法的有效性。代碼和預訓練模型可在https://gynjn.github.io/selfsplat/上找到。
English
We propose SelfSplat, a novel 3D Gaussian Splatting model designed to perform
pose-free and 3D prior-free generalizable 3D reconstruction from unposed
multi-view images. These settings are inherently ill-posed due to the lack of
ground-truth data, learned geometric information, and the need to achieve
accurate 3D reconstruction without finetuning, making it difficult for
conventional methods to achieve high-quality results. Our model addresses these
challenges by effectively integrating explicit 3D representations with
self-supervised depth and pose estimation techniques, resulting in reciprocal
improvements in both pose accuracy and 3D reconstruction quality. Furthermore,
we incorporate a matching-aware pose estimation network and a depth refinement
module to enhance geometry consistency across views, ensuring more accurate and
stable 3D reconstructions. To present the performance of our method, we
evaluated it on large-scale real-world datasets, including RealEstate10K, ACID,
and DL3DV. SelfSplat achieves superior results over previous state-of-the-art
methods in both appearance and geometry quality, also demonstrates strong
cross-dataset generalization capabilities. Extensive ablation studies and
analysis also validate the effectiveness of our proposed methods. Code and
pretrained models are available at https://gynjn.github.io/selfsplat/Summary
AI-Generated Summary