MATATA:一種用於表格應用的弱監督式數學工具輔助推理
MATATA: a weak-supervised MAthematical Tool-Assisted reasoning for Tabular Applications
November 28, 2024
作者: Vishnou Vinayagame, Gregory Senay, Luis Martí
cs.AI
摘要
隨著工具增強的語言代理,數學推理能力正在增強,但方法通常依賴於封閉源碼或大型模型、外部數據,或大量提示工程。本研究介紹了MATATA,這是一種新穎且具成本效益的方法,用於訓練LLM代理以解決表格數據問題,通過推理、規劃和工具使用。採用漸進式自我改進範式和迭代式弱監督,賦予38億/80億小型語言模型(SLMs)強大的能力,特別適用於敏感業務環境,其中數據隱私至關重要。通過在不同數據集上使用靈活且可重複使用的工具,實現了在共享任務中的有效可擴展性,並取得了穩健的性能。實驗表明,MATATA在基於開源模型的推理框架中在FinQA和TAT-QA上達到了最先進的性能。此外,MATATA模型在TabMWP上與基於GPT-4的框架競爭,同時仍然是SLMs。
English
Mathematical reasoning capabilities are increasing with tool-augmented
language agents, but methods often rely either on closed-source or large
models, external data, or extensive prompt engineering. This work introduces
MATATA, a novel cost-effective method to train LLM agents for tabular data
problems through reasoning, planning, and tool use. With a progressive
self-improvement paradigm and an iterative weak supervision, it empowers
3.8B/8B Small Language Models (SLMs), particularly suited for local hosting and
sensitive business contexts where data privacy is crucial. By employing a
flexible and reusable tools across different datasets, it achieves robust
performance with effective scalability across shared tasks. Experiments show
that MATATA reaches state-of-the-art performances on FinQA and TAT-QA among
reasoning frameworks based on open-source models. Moreover, MATATA models
compete with GPT-4 based frameworks on TabMWP, while being SLMs.Summary
AI-Generated Summary