Hermes:一個大型語言模型框架,邁向自主網路的旅程
Hermes: A Large Language Model Framework on the Journey to Autonomous Networks
November 10, 2024
作者: Fadhel Ayed, Ali Maatouk, Nicola Piovesan, Antonio De Domenico, Merouane Debbah, Zhi-Quan Luo
cs.AI
摘要
隨著蜂窩網絡系統日益複雜,自動化網絡運營的需求不斷增長。儘管有所進展,但由於依賴人類干預來建模網絡行為並定義滿足目標需求的政策,完全自主目前仍難以實現。網絡數字孿生體(NDTs)顯示出增強網絡智能的潛力,但該技術的成功應用受到用例特定架構的限制,限制了其在推進網絡自主性方面的作用。需要更具能力的網絡智能,即“電信大腦”,以實現對蜂窩網絡的無縫自主管理。大型語言模型(LLMs)已被提出作為實現這一願景的潛在推動者,但在網絡建模方面面臨挑戰,尤其是在推理和處理多樣數據類型方面。為了解決這些差距,我們引入了 Hermes,一系列LLM代理的鏈,通過結構化和可解釋的邏輯步驟使用“藍圖”來構建NDT實例。Hermes實現了對多樣用例和配置進行自動、可靠和準確的網絡建模,從而實現了向完全自主網絡運營的進展。
English
The drive toward automating cellular network operations has grown with the
increasing complexity of these systems. Despite advancements, full autonomy
currently remains out of reach due to reliance on human intervention for
modeling network behaviors and defining policies to meet target requirements.
Network Digital Twins (NDTs) have shown promise in enhancing network
intelligence, but the successful implementation of this technology is
constrained by use case-specific architectures, limiting its role in advancing
network autonomy. A more capable network intelligence, or "telecommunications
brain", is needed to enable seamless, autonomous management of cellular
network. Large Language Models (LLMs) have emerged as potential enablers for
this vision but face challenges in network modeling, especially in reasoning
and handling diverse data types. To address these gaps, we introduce Hermes, a
chain of LLM agents that uses "blueprints" for constructing NDT instances
through structured and explainable logical steps. Hermes allows automatic,
reliable, and accurate network modeling of diverse use cases and
configurations, thus marking progress toward fully autonomous network
operations.Summary
AI-Generated Summary