AfriHate:一個包含非洲語言仇恨言論和虐待性語言的多語言數據集
AfriHate: A Multilingual Collection of Hate Speech and Abusive Language Datasets for African Languages
January 14, 2025
作者: Shamsuddeen Hassan Muhammad, Idris Abdulmumin, Abinew Ali Ayele, David Ifeoluwa Adelani, Ibrahim Said Ahmad, Saminu Mohammad Aliyu, Nelson Odhiambo Onyango, Lilian D. A. Wanzare, Samuel Rutunda, Lukman Jibril Aliyu, Esubalew Alemneh, Oumaima Hourrane, Hagos Tesfahun Gebremichael, Elyas Abdi Ismail, Meriem Beloucif, Ebrahim Chekol Jibril, Andiswa Bukula, Rooweither Mabuya, Salomey Osei, Abigail Oppong, Tadesse Destaw Belay, Tadesse Kebede Guge, Tesfa Tegegne Asfaw, Chiamaka Ijeoma Chukwuneke, Paul Röttger, Seid Muhie Yimam, Nedjma Ousidhoum
cs.AI
摘要
仇恨言論和辱罵性語言是全球性現象,需要社會文化背景知識才能被理解、識別和調節。然而,在全球南方的許多地區,已經有多起記錄的事件顯示了(1)缺乏調節和(2)因依賴上下文之外的關鍵字識別而進行審查。此外,知名人士經常處於調節過程的中心,而針對少數群體的大規模和有針對性的仇恨言論活動則被忽視。這些限制主要是由於當地語言缺乏高質量數據,以及未能將當地社區納入收集、標註和調節過程。為了解決這個問題,我們提出了AfriHate:一個包含15種非洲語言的仇恨言論和辱罵性語言數據集的多語言收集。AfriHate中的每個實例都由熟悉當地文化的母語人士進行標註。我們報告了與數據集構建相關的挑戰,並提出了使用LLMs和不使用LLMs的各種分類基線結果。這些數據集、個別標註和仇恨言論和冒犯性語言詞彙表可在https://github.com/AfriHate/AfriHate上獲得。
English
Hate speech and abusive language are global phenomena that need
socio-cultural background knowledge to be understood, identified, and
moderated. However, in many regions of the Global South, there have been
several documented occurrences of (1) absence of moderation and (2) censorship
due to the reliance on keyword spotting out of context. Further, high-profile
individuals have frequently been at the center of the moderation process, while
large and targeted hate speech campaigns against minorities have been
overlooked. These limitations are mainly due to the lack of high-quality data
in the local languages and the failure to include local communities in the
collection, annotation, and moderation processes. To address this issue, we
present AfriHate: a multilingual collection of hate speech and abusive language
datasets in 15 African languages. Each instance in AfriHate is annotated by
native speakers familiar with the local culture. We report the challenges
related to the construction of the datasets and present various classification
baseline results with and without using LLMs. The datasets, individual
annotations, and hate speech and offensive language lexicons are available on
https://github.com/AfriHate/AfriHateSummary
AI-Generated Summary