GAN已死;GAN萬歲!一個現代GAN基準。
The GAN is dead; long live the GAN! A Modern GAN Baseline
January 9, 2025
作者: Yiwen Huang, Aaron Gokaslan, Volodymyr Kuleshov, James Tompkin
cs.AI
摘要
有一個廣泛流傳的說法是,生成對抗網絡(GANs)很難訓練,文獻中的GAN架構充斥著經驗性技巧。我們提供證據反駁這一說法,並以更為原則性的方式建立一個現代GAN基線。首先,我們推導出一個行為良好的正則化相對論GAN損失,解決了以往通過一堆臨時技巧來應對的模式丟失和不收斂問題。我們從數學上分析我們的損失並證明它具有局部收斂保證,這與大多數現有的相對論損失不同。其次,我們的新損失使我們能夠放棄所有臨時技巧,並將常見GAN中使用的過時骨幹替換為現代架構。以StyleGAN2為例,我們提出了一個簡化和現代化的路線圖,形成了一個新的極簡主義基線 - R3GAN。儘管簡單,我們的方法在FFHQ、ImageNet、CIFAR和Stacked MNIST數據集上超越了StyleGAN2,並與最先進的GAN和擴散模型相比表現出色。
English
There is a widely-spread claim that GANs are difficult to train, and GAN
architectures in the literature are littered with empirical tricks. We provide
evidence against this claim and build a modern GAN baseline in a more
principled manner. First, we derive a well-behaved regularized relativistic GAN
loss that addresses issues of mode dropping and non-convergence that were
previously tackled via a bag of ad-hoc tricks. We analyze our loss
mathematically and prove that it admits local convergence guarantees, unlike
most existing relativistic losses. Second, our new loss allows us to discard
all ad-hoc tricks and replace outdated backbones used in common GANs with
modern architectures. Using StyleGAN2 as an example, we present a roadmap of
simplification and modernization that results in a new minimalist baseline --
R3GAN. Despite being simple, our approach surpasses StyleGAN2 on FFHQ,
ImageNet, CIFAR, and Stacked MNIST datasets, and compares favorably against
state-of-the-art GANs and diffusion models.Summary
AI-Generated Summary