VideoRefer 套件:透過 Video LLM 推進時空物件理解

VideoRefer Suite: Advancing Spatial-Temporal Object Understanding with Video LLM

December 31, 2024
作者: Yuqian Yuan, Hang Zhang, Wentong Li, Zesen Cheng, Boqiang Zhang, Long Li, Xin Li, Deli Zhao, Wenqiao Zhang, Yueting Zhuang, Jianke Zhu, Lidong Bing
cs.AI

摘要

最近,視頻大型語言模型(Video LLMs)展示了在一般視頻理解方面的卓越能力。然而,它們主要專注於整體理解,並且在捕捉細粒度空間和時間細節方面遇到困難。此外,缺乏高質量的物體級視頻指導數據和全面的基準進一步阻礙了它們的發展。為應對這些挑戰,我們引入了VideoRefer Suite,以增強Video LLM對更細緻的空間-時間視頻理解,即實現對整個視頻中任何物體的感知和推理。特別是,我們從三個基本方面全面發展了VideoRefer Suite:數據集、模型和基準。首先,我們引入了一個多智能體數據引擎,精心策劃了一個大規模、高質量的物體級視頻指導數據集,稱為VideoRefer-700K。接下來,我們提出了VideoRefer模型,它配備了一個多功能的空間-時間物體編碼器,以捕捉精確的區域和序列表示。最後,我們精心創建了一個VideoRefer-Bench,全面評估Video LLM的空間-時間理解能力,跨多個方面進行評估。廣泛的實驗和分析表明,我們的VideoRefer模型不僅在視頻參考基準上取得了令人期待的表現,還促進了一般視頻理解能力。
English
Video Large Language Models (Video LLMs) have recently exhibited remarkable capabilities in general video understanding. However, they mainly focus on holistic comprehension and struggle with capturing fine-grained spatial and temporal details. Besides, the lack of high-quality object-level video instruction data and a comprehensive benchmark further hinders their advancements. To tackle these challenges, we introduce the VideoRefer Suite to empower Video LLM for finer-level spatial-temporal video understanding, i.e., enabling perception and reasoning on any objects throughout the video. Specially, we thoroughly develop VideoRefer Suite across three essential aspects: dataset, model, and benchmark. Firstly, we introduce a multi-agent data engine to meticulously curate a large-scale, high-quality object-level video instruction dataset, termed VideoRefer-700K. Next, we present the VideoRefer model, which equips a versatile spatial-temporal object encoder to capture precise regional and sequential representations. Finally, we meticulously create a VideoRefer-Bench to comprehensively assess the spatial-temporal understanding capability of a Video LLM, evaluating it across various aspects. Extensive experiments and analyses demonstrate that our VideoRefer model not only achieves promising performance on video referring benchmarks but also facilitates general video understanding capabilities.

Summary

AI-Generated Summary

Paper Overview

The paper introduces the VideoRefer Suite, which enhances spatial-temporal object understanding in videos through a dataset, model, and benchmark. It significantly improves regional video understanding and general video comprehension, outperforming existing methods.

Core Contribution

  • Introduction of VideoRefer Suite for fine-grained spatial-temporal object understanding.
  • Development of VideoRefer model with a spatial-temporal object encoder.
  • Creation of VideoRefer-700K dataset using a multi-agent data engine.
  • Establishment of VideoRefer-Bench for evaluating spatial-temporal understanding.
  • Advancement in video object referring, relationship analysis, and retrieval tasks.

Research Context

The study addresses the limitations of Video Large Language Models (Video LLMs) in capturing fine-grained spatial and temporal details, focusing on enhancing regional video understanding and general video comprehension.

Keywords

VideoRefer Suite, Video LLMs, spatial-temporal object understanding, VideoRefer-700K dataset, VideoRefer model, VideoRefer-Bench, fine-grained video comprehension

Background

The research aims to improve video understanding by overcoming the limitations of Video LLMs in capturing detailed spatial and temporal information. It introduces the VideoRefer Suite to enhance regional video comprehension and general video understanding.

Research Gap

Existing Video LLMs struggle with fine-grained spatial and temporal details, necessitating the development of VideoRefer for improved object-level video instruction comprehension.

Technical Challenges

Challenges include capturing precise regional and sequential representations, integrating object embeddings with temporal cues, and evaluating spatial-temporal understanding capabilities accurately.

Prior Approaches

Previous methods lacked the capability to address fine-grained spatial-temporal object understanding, prompting the need for the VideoRefer Suite with its dataset, model, and benchmark.

Methodology

The methodology involves creating the VideoRefer-700K dataset, developing the VideoRefer model with a spatial-temporal object encoder, and implementing the VideoRefer-Bench for evaluation.

Theoretical Foundation

The study is based on enhancing spatial-temporal object understanding in videos through a spatial-temporal object encoder and object-level representations across video scenes.

Technical Architecture

The VideoRefer model incorporates a spatial-temporal object encoder (REnc) supporting single-frame and multi-frame modes for capturing spatial features and aggregating temporal information.

Implementation Details

The methodology includes a hybrid training strategy with the siglip-so400m-patch14-384 vision encoder and Qwen-2 LLM, involving pre-training and tuning stages for model development.

Innovation Points

Innovations include the Spatial Token Extractor, Temporal Token Merge Module, and the VideoRefer-Bench for evaluating model performance in various video comprehension tasks.

Experimental Validation

The experimental validation includes setting up configurations, defining metrics, presenting results, and conducting comparative analyses to demonstrate the effectiveness of VideoRefer.

Setup

Exact configurations involve using the siglip-so400m-patch14-384 vision encoder and Qwen-2 LLM for training the VideoRefer model on the VideoRefer-700K dataset.

Metrics

Metrics include evaluation criteria like Subject Correspondence, Appearance Description, Temporal Description, and Hallucination Detection for assessing model performance.

Results

Quantitative and qualitative findings show VideoRefer outperforming previous methods in regional-temporal video understanding tasks on VideoRefer-BenchD and VideoRefer-BenchQ.

Comparative Analysis

Comparisons with existing models demonstrate VideoRefer's superiority in basic questions, relationship questions, reasoning questions, and future predictions, showcasing enhanced video comprehension capabilities.

Impact and Implications

The study's impact lies in advancing spatial-temporal understanding in video comprehension, improving fine-grained regional video understanding, and enhancing general video comprehension.

Key Findings

VideoRefer excels in subject correspondence, appearance description, temporal description, and hallucination detection, demonstrating superior performance in both single-frame and multi-frame modes.

Limitations

The system lacks grounding abilities for identifying and associating objects within dynamic contexts, indicating a potential area for improvement.

Future Directions

Future work aims to integrate grounding abilities into the framework to enhance practical applicability and further improve video comprehension tasks.

Practical Significance

VideoRefer enables basic video object referring, complex relationship analysis, and object retrieval tasks, enhancing user interactivity and advancing video understanding capabilities.

熱門論文

1比特LLM時代:所有大型語言模型都在1.58比特。
The Era of 1-bit LLMs: All Large Language Models are in 1.58 Bits

Shuming Ma, Hongyu Wang, Lingxiao Ma, Lei Wang, Wenhui Wang, Shaohan Huang, Li Dong, Ruiping Wang, Jilong Xue, Furu WeiFeb 27, 2024612142

DeepSeek-R1:通過強化學習激勵LLM中的推理能力
DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, Zhen ZhangJan 22, 20253735

Qwen2.5 技術報告
Qwen2.5 Technical Report

Qwen, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, Zihan QiuDec 19, 202436311

PDF472January 3, 2025