DreamWaltz-G:從骨架引導的2D擴散生成具表現力的3D高斯化身
DreamWaltz-G: Expressive 3D Gaussian Avatars from Skeleton-Guided 2D Diffusion
September 25, 2024
作者: Yukun Huang, Jianan Wang, Ailing Zeng, Zheng-Jun Zha, Lei Zhang, Xihui Liu
cs.AI
摘要
借助預訓練的2D擴散模型和分數蒸餾採樣(SDS),最近的方法展示了在從文本生成3D頭像方面取得了令人期待的結果。然而,生成具有表現力動畫能力的高質量3D頭像仍然具有挑戰性。在這項工作中,我們提出了一種名為DreamWaltz-G的新型學習框架,用於從文本生成可動畫的3D頭像。該框架的核心在於骨架引導的分數蒸餾和混合3D高斯頭像表示。具體而言,所提出的骨架引導的分數蒸餾將3D人類模板的骨架控制整合到2D擴散模型中,增強了SDS監督在視角和人體姿勢方面的一致性。這有助於生成高質量的頭像,減輕了多個臉部、額外肢體和模糊等問題。所提出的混合3D高斯頭像表示建立在高效的3D高斯基礎上,結合了神經隱式場和參數化的3D網格,實現了實時渲染、穩定的SDS優化和表現力豐富的動畫。大量實驗表明,DreamWaltz-G在生成和動畫化3D頭像方面非常有效,在視覺質量和動畫表現方面優於現有方法。我們的框架進一步支持各種應用,包括人類視頻再現和多主題場景合成。
English
Leveraging pretrained 2D diffusion models and score distillation sampling
(SDS), recent methods have shown promising results for text-to-3D avatar
generation. However, generating high-quality 3D avatars capable of expressive
animation remains challenging. In this work, we present DreamWaltz-G, a novel
learning framework for animatable 3D avatar generation from text. The core of
this framework lies in Skeleton-guided Score Distillation and Hybrid 3D
Gaussian Avatar representation. Specifically, the proposed skeleton-guided
score distillation integrates skeleton controls from 3D human templates into 2D
diffusion models, enhancing the consistency of SDS supervision in terms of view
and human pose. This facilitates the generation of high-quality avatars,
mitigating issues such as multiple faces, extra limbs, and blurring. The
proposed hybrid 3D Gaussian avatar representation builds on the efficient 3D
Gaussians, combining neural implicit fields and parameterized 3D meshes to
enable real-time rendering, stable SDS optimization, and expressive animation.
Extensive experiments demonstrate that DreamWaltz-G is highly effective in
generating and animating 3D avatars, outperforming existing methods in both
visual quality and animation expressiveness. Our framework further supports
diverse applications, including human video reenactment and multi-subject scene
composition.Summary
AI-Generated Summary