ChatPaper.aiChatPaper

MLP-KAN:統一深度表示和函數學習

MLP-KAN: Unifying Deep Representation and Function Learning

October 3, 2024
作者: Yunhong He, Yifeng Xie, Zhengqing Yuan, Lichao Sun
cs.AI

摘要

最近在表示學習和函數學習方面的最新進展展示了在人工智慧各個領域中的巨大潛力。然而,這些範式的有效整合構成了一個重大挑戰,特別是在用戶必須根據數據集特性手動決定應用表示學習還是函數學習模型的情況下。為了解決這個問題,我們引入了 MLP-KAN,這是一種統一的方法,旨在消除手動模型選擇的需要。通過在專家混合模型 (MoE) 結構中集成多層感知器 (MLPs) 進行表示學習和科爾莫哥洛夫-阿諾德網絡 (KANs) 進行函數學習,MLP-KAN 可動態適應當前任務的具體特性,確保最佳性能。嵌入到基於變壓器的框架中,我們的工作在各個領域的四個廣泛使用的數據集上取得了顯著成果。廣泛的實驗評估顯示了其卓越的多功能性,提供了在深度表示學習和函數學習任務中競爭性表現。這些發現突顯了 MLP-KAN 簡化模型選擇過程的潛力,提供了一個全面、適應性的解決方案,適用於各種領域。我們的代碼和權重可在 https://github.com/DLYuanGod/MLP-KAN 上找到。
English
Recent advancements in both representation learning and function learning have demonstrated substantial promise across diverse domains of artificial intelligence. However, the effective integration of these paradigms poses a significant challenge, particularly in cases where users must manually decide whether to apply a representation learning or function learning model based on dataset characteristics. To address this issue, we introduce MLP-KAN, a unified method designed to eliminate the need for manual model selection. By integrating Multi-Layer Perceptrons (MLPs) for representation learning and Kolmogorov-Arnold Networks (KANs) for function learning within a Mixture-of-Experts (MoE) architecture, MLP-KAN dynamically adapts to the specific characteristics of the task at hand, ensuring optimal performance. Embedded within a transformer-based framework, our work achieves remarkable results on four widely-used datasets across diverse domains. Extensive experimental evaluation demonstrates its superior versatility, delivering competitive performance across both deep representation and function learning tasks. These findings highlight the potential of MLP-KAN to simplify the model selection process, offering a comprehensive, adaptable solution across various domains. Our code and weights are available at https://github.com/DLYuanGod/MLP-KAN.

Summary

AI-Generated Summary

PDF313November 16, 2024