因果副駕駛:自主因果分析代理
Causal-Copilot: An Autonomous Causal Analysis Agent
April 17, 2025
作者: Xinyue Wang, Kun Zhou, Wenyi Wu, Har Simrat Singh, Fang Nan, Songyao Jin, Aryan Philip, Saloni Patnaik, Hou Zhu, Shivam Singh, Parjanya Prashant, Qian Shen, Biwei Huang
cs.AI
摘要
因果分析在科學發現與可靠決策中扮演著基礎性角色,然而由於其概念與算法上的複雜性,這一方法對領域專家而言仍難以觸及。因果方法論與實際應用之間的這種脫節帶來了雙重挑戰:領域專家無法利用因果學習的最新進展,而因果研究者則缺乏廣泛的現實世界部署來測試和完善其方法。為解決這一問題,我們推出了Causal-Copilot,這是一款在大型語言模型框架內實現專家級因果分析的自動化代理。Causal-Copilot自動化完成了針對表格數據和時間序列數據的完整因果分析流程——包括因果發現、因果推斷、算法選擇、超參數優化、結果解釋以及可操作見解的生成。它支持通過自然語言進行交互式精煉,降低了非專業人士的使用門檻,同時保持了方法論的嚴謹性。通過整合超過20種最先進的因果分析技術,我們的系統促進了良性循環——為領域專家擴展了先進因果方法的可及性,同時生成了豐富的現實世界應用,這些應用反過來又啟發並推動了因果理論的發展。實證評估表明,Causal-Copilot相較於現有基線展現出更優異的性能,提供了一個可靠、可擴展且可延伸的解決方案,有效彌合了因果分析中理論精妙與現實應用之間的鴻溝。Causal-Copilot的實時互動演示可在https://causalcopilot.com/上訪問。
English
Causal analysis plays a foundational role in scientific discovery and
reliable decision-making, yet it remains largely inaccessible to domain experts
due to its conceptual and algorithmic complexity. This disconnect between
causal methodology and practical usability presents a dual challenge: domain
experts are unable to leverage recent advances in causal learning, while causal
researchers lack broad, real-world deployment to test and refine their methods.
To address this, we introduce Causal-Copilot, an autonomous agent that
operationalizes expert-level causal analysis within a large language model
framework. Causal-Copilot automates the full pipeline of causal analysis for
both tabular and time-series data -- including causal discovery, causal
inference, algorithm selection, hyperparameter optimization, result
interpretation, and generation of actionable insights. It supports interactive
refinement through natural language, lowering the barrier for non-specialists
while preserving methodological rigor. By integrating over 20 state-of-the-art
causal analysis techniques, our system fosters a virtuous cycle -- expanding
access to advanced causal methods for domain experts while generating rich,
real-world applications that inform and advance causal theory. Empirical
evaluations demonstrate that Causal-Copilot achieves superior performance
compared to existing baselines, offering a reliable, scalable, and extensible
solution that bridges the gap between theoretical sophistication and real-world
applicability in causal analysis. A live interactive demo of Causal-Copilot is
available at https://causalcopilot.com/.Summary
AI-Generated Summary