ChatPaper.aiChatPaper

在知識衝突下分析語言模型的殘餘流。

Analysing the Residual Stream of Language Models Under Knowledge Conflicts

October 21, 2024
作者: Yu Zhao, Xiaotang Du, Giwon Hong, Aryo Pradipta Gema, Alessio Devoto, Hongru Wang, Xuanli He, Kam-Fai Wong, Pasquale Minervini
cs.AI

摘要

大型語言模型(LLMs)可以在其參數中存儲大量的事實知識。然而,它們的參數知識可能與上下文提供的信息相衝突。這種衝突可能導致模型行為不良,例如依賴過時或不正確的信息。在這項工作中,我們研究LLMs是否能夠識別知識衝突,以及通過分析LLM的殘差流是否可能知道模型將依賴哪一來源的知識。通過探測任務,我們發現LLMs可以在殘差流中內部記錄知識衝突的信號,這可以通過探測中間模型激活來準確檢測。這使我們能夠在生成答案之前檢測到殘差流中的衝突,而無需修改輸入或模型參數。此外,我們發現當模型依賴上下文知識或參數知識來解決衝突時,殘差流顯示出顯著不同的模式。這種模式可以用來估計LLMs在發生衝突時的行為,並在生成答案之前防止意外答案的產生。我們的分析提供了有關LLMs如何內部管理知識衝突的見解,並為開發控制知識選擇過程的方法奠定了基礎。
English
Large language models (LLMs) can store a significant amount of factual knowledge in their parameters. However, their parametric knowledge may conflict with the information provided in the context. Such conflicts can lead to undesirable model behaviour, such as reliance on outdated or incorrect information. In this work, we investigate whether LLMs can identify knowledge conflicts and whether it is possible to know which source of knowledge the model will rely on by analysing the residual stream of the LLM. Through probing tasks, we find that LLMs can internally register the signal of knowledge conflict in the residual stream, which can be accurately detected by probing the intermediate model activations. This allows us to detect conflicts within the residual stream before generating the answers without modifying the input or model parameters. Moreover, we find that the residual stream shows significantly different patterns when the model relies on contextual knowledge versus parametric knowledge to resolve conflicts. This pattern can be employed to estimate the behaviour of LLMs when conflict happens and prevent unexpected answers before producing the answers. Our analysis offers insights into how LLMs internally manage knowledge conflicts and provides a foundation for developing methods to control the knowledge selection processes.

Summary

AI-Generated Summary

PDF72November 16, 2024