SLIMER-IT:義大利語零樣本命名實體識別
SLIMER-IT: Zero-Shot NER on Italian Language
September 24, 2024
作者: Andrew Zamai, Leonardo Rigutini, Marco Maggini, Andrea Zugarini
cs.AI
摘要
傳統的命名實體識別(NER)方法將該任務定義為一個BIO序列標記問題。儘管這些系統在手頭的下游任務中表現出色,但它們需要大量標註數據,並且難以推廣到超出分布輸入領域和看不見的實體類型。相反,大型語言模型(LLMs)展現出強大的零-shot能力。雖然有幾篇論文探討了英語中的零-shot NER,但在其他語言中所做的工作很少。在本文中,我們為零-shot NER 定義了一個評估框架,並將其應用於義大利語。此外,我們介紹了SLIMER-IT,這是SLIMER的義大利語版本,一種利用富含定義和指南的提示的說明調整方法,用於零-shot NER。與其他最先進的模型進行比較,證明了SLIMER-IT在從未見過的實體標籤上的優越性。
English
Traditional approaches to Named Entity Recognition (NER) frame the task into
a BIO sequence labeling problem. Although these systems often excel in the
downstream task at hand, they require extensive annotated data and struggle to
generalize to out-of-distribution input domains and unseen entity types. On the
contrary, Large Language Models (LLMs) have demonstrated strong zero-shot
capabilities. While several works address Zero-Shot NER in English, little has
been done in other languages. In this paper, we define an evaluation framework
for Zero-Shot NER, applying it to the Italian language. Furthermore, we
introduce SLIMER-IT, the Italian version of SLIMER, an instruction-tuning
approach for zero-shot NER leveraging prompts enriched with definition and
guidelines. Comparisons with other state-of-the-art models, demonstrate the
superiority of SLIMER-IT on never-seen-before entity tags.Summary
AI-Generated Summary