在離策略指導下學習推理
Learning to Reason under Off-Policy Guidance
April 21, 2025
作者: Jianhao Yan, Yafu Li, Zican Hu, Zhi Wang, Ganqu Cui, Xiaoye Qu, Yu Cheng, Yue Zhang
cs.AI
摘要
近期在大規模推理模型(LRMs)上的進展表明,通過基於簡單規則的獎勵進行強化學習(RL),可以湧現出多步推理和自我反思等複雜行為。然而,現有的零RL方法本質上是「在策略」的,這限制了學習僅依賴模型自身的輸出,無法獲得超越其初始能力的推理技能。我們引入了LUFFY(在離策略指導下學習推理),這是一個通過離策略推理軌跡來增強零RL的框架。LUFFY在訓練過程中動態平衡模仿與探索,通過結合離策略示範和在策略的rollout來實現。值得注意的是,我們提出了通過正則化重要性採樣進行策略塑形,以避免在混合策略訓練中出現表面化和僵化的模仿。顯著的是,LUFFY在六個數學基準測試中平均提升了超過+7.0分,並在分佈外任務中取得了超過+6.2分的優勢。它還大幅超越了基於模仿的監督微調(SFT),特別是在泛化能力方面。分析顯示,LUFFY不僅能有效模仿,還能超越示範進行探索,為訓練具有離策略指導的可泛化推理模型提供了一條可擴展的路徑。
English
Recent advances in large reasoning models (LRMs) demonstrate that
sophisticated behaviors such as multi-step reasoning and self-reflection can
emerge via reinforcement learning (RL) with simple rule-based rewards. However,
existing zero-RL approaches are inherently ``on-policy'', limiting learning to
a model's own outputs and failing to acquire reasoning abilities beyond its
initial capabilities. We introduce LUFFY (Learning to reason Under oFF-policY
guidance), a framework that augments zero-RL with off-policy reasoning traces.
LUFFY dynamically balances imitation and exploration by combining off-policy
demonstrations with on-policy rollouts during training. Notably, we propose
policy shaping via regularized importance sampling to avoid superficial and
rigid imitation during mixed-policy training. Remarkably, LUFFY achieves an
over +7.0 average gain across six math benchmarks and an advantage of over +6.2
points in out-of-distribution tasks. It also substantially surpasses
imitation-based supervised fine-tuning (SFT), particularly in generalization.
Analysis shows LUFFY not only imitates effectively but also explores beyond
demonstrations, offering a scalable path to train generalizable reasoning
models with off-policy guidance.Summary
AI-Generated Summary