SHAKTI:一個針對邊緣人工智慧和低資源環境優化的擁有 25 億參數的小型語言模型
SHAKTI: A 2.5 Billion Parameter Small Language Model Optimized for Edge AI and Low-Resource Environments
October 15, 2024
作者: Syed Abdul Gaffar Shakhadri, Kruthika KR, Rakshit Aralimatti
cs.AI
摘要
我們介紹Shakti,這是一個擁有25億參數的語言模型,專門為資源受限環境(如邊緣裝置,包括智慧手機、可穿戴裝置和物聯網系統)進行了優化。Shakti結合了高性能自然語言處理(NLP)與優化的效率和精確性,使其非常適合於計算資源和記憶體有限的實時人工智慧應用。支援方言語言和特定領域任務,Shakti在醫療保健、金融和客戶服務等行業表現卓越。基準評估顯示,Shakti在維持低延遲和設備效率的同時,與更大的模型競爭力強,使其成為邊緣人工智慧的領先解決方案。
English
We introduce Shakti, a 2.5 billion parameter language model specifically
optimized for resource-constrained environments such as edge devices, including
smartphones, wearables, and IoT systems. Shakti combines high-performance NLP
with optimized efficiency and precision, making it ideal for real-time AI
applications where computational resources and memory are limited. With support
for vernacular languages and domain-specific tasks, Shakti excels in industries
such as healthcare, finance, and customer service. Benchmark evaluations
demonstrate that Shakti performs competitively against larger models while
maintaining low latency and on-device efficiency, positioning it as a leading
solution for edge AI.Summary
AI-Generated Summary