HelloMeme:將空間編織關注整合到擴散模型中,以嵌入高層次和豐富保真條件
HelloMeme: Integrating Spatial Knitting Attentions to Embed High-Level and Fidelity-Rich Conditions in Diffusion Models
October 30, 2024
作者: Shengkai Zhang, Nianhong Jiao, Tian Li, Chaojie Yang, Chenhui Xue, Boya Niu, Jun Gao
cs.AI
摘要
我們提出了一種有效的方法,將適配器插入文本到圖像基礎模型中,從而實現執行複雜的下游任務,同時保留基礎模型的泛化能力。該方法的核心思想是優化與2D特徵圖相關的注意機制,從而增強適配器的性能。這種方法在模因視頻生成任務上得到驗證,並取得了顯著的成果。我們希望這項工作能為大型文本到圖像模型的後訓練任務提供一些見解。此外,由於這種方法展示了與SD1.5衍生模型良好的兼容性,對於開源社區具有一定價值。因此,我們將釋出相關代碼(https://songkey.github.io/hellomeme)。
English
We propose an effective method for inserting adapters into text-to-image
foundation models, which enables the execution of complex downstream tasks
while preserving the generalization ability of the base model. The core idea of
this method is to optimize the attention mechanism related to 2D feature maps,
which enhances the performance of the adapter. This approach was validated on
the task of meme video generation and achieved significant results. We hope
this work can provide insights for post-training tasks of large text-to-image
models. Additionally, as this method demonstrates good compatibility with SD1.5
derivative models, it holds certain value for the open-source community.
Therefore, we will release the related code
(https://songkey.github.io/hellomeme).Summary
AI-Generated Summary